Specificity of Internal Representations Underlying Grasping

2000 ◽  
Vol 84 (5) ◽  
pp. 2390-2397 ◽  
Author(s):  
Iran Salimi ◽  
Ian Hollender ◽  
Wendy Frazier ◽  
Andrew M. Gordon

The present study examines anticipatory control of fingertip forces during grasping based on the center of mass (CM) of a manipulated object. Subjects lifted an object using a precision grip while the fingertip forces and the angle about the vertical axis (roll) were measured. The object's CM could be shifted to the left or right of the object's center parallel to the grip axis without changing it's visual appearance. Subjects performed 20 lifts with the CM in the center, left, and right side of the object, respectively. Subjects were instructed to lift the object while preventing it from tilting. Within three to five lifts, subjects were able to asymmetrically partition the load force development before lift-off such that it was higher in the digit opposing the CM. This anticipatory load force partitioning prevented the object from rolling sideways at lift-off. To determine whether the internal representation underlying the anticipatory control is specific to the effectors used to form it, subjects performed five lifts with the right hand with the CM on one side. Following these lifts, they rotated the object 180° around the vertical axis and performed one lift with the same hand or they translated the object to the left side of the body (with or without rotating it) and performed one lift with the left hand. Despite subjects' explicit knowledge of the new weight distribution, they were unable to appropriately scale the load forces at each digit, resulting in a subsequent large roll of the object. The findings suggest that within a few lifts subjects achieve a stable internal representation which accounts for the object's CM and is used to scale the fingertip forces in advance. They also suggest that this representation, which is used for anticipatory control of fingertip forces, is specific to the effectors used to form it. We propose that multiple internal representations may be used during the anticipatory control of grasping.

2017 ◽  
Vol 118 (4) ◽  
pp. 2110-2131 ◽  
Author(s):  
Guy Avraham ◽  
Firas Mawase ◽  
Amir Karniel ◽  
Lior Shmuelof ◽  
Opher Donchin ◽  
...  

To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the delayed information.


2015 ◽  
Vol 113 (9) ◽  
pp. 3076-3089 ◽  
Author(s):  
Raz Leib ◽  
Amir Karniel ◽  
Ilana Nisky

During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain.


Author(s):  
João Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an experimental and numerical investigation on the motions of a floating body of simple geometry subjected to harmonic and biharmonic waves. The experiments were carried out in three different water depths representing shallow and deep water. The body is axisymmetric about the vertical axis, like a vertical cylinder with a rounded bottom, and it is kept in place with a soft mooring system. The experimental results include the first order motion responses, the steady drift motion offset in regular waves and the slowly varying motions due to second order interaction in biharmonic waves. The hydrodynamic problem is solved numerically with a second order boundary element method. The results show a good agreement of the numerical calculations with the experiments.


Author(s):  
Joa˜o Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an investigation of the slowly varying second order drift forces on a floating body of simple geometry. The body is axis-symmetric about the vertical axis, like a vertical cylinder with a rounded bottom and a ratio of diameter to draft of 3.25. The hydrodynamic problem is solved with a second order boundary element method. The second order problem is due to interactions between pairs of incident harmonic waves with different frequencies, therefore the calculations are carried out for several difference frequencies with the mean frequency covering the whole frequency range of interest. Results include the surge drift force and pitch drift moment. The results are presented in several stages in order to assess the influence of different phenomena contributing to the global second order responses. Firstly the body is restrained and secondly it is free to move at the wave frequency. The second order results include the contribution associated with quadratic products of first order quantities, the total second order force, and the contribution associated to the free surface forcing.


Author(s):  
Rosemary Gallagher ◽  
Stephaine Perez ◽  
Derek DeLuca ◽  
Isaac L. Kurtzer

Reaching movements performed from a crouched body posture require a shift of body weight from both arms to one arm. This situation has remained unexamined despite the analogous load requirements during step initiation and the many studies of reaching from a seated or standing posture. To determine whether the body weight shift involves anticipatory or exclusively reactive control we obtained force plate records, hand kinematics, and arm muscle activity from 11 healthy right-handed participants. They performed reaching movements with their left and right arm in two speed contexts - 'comfortable' and 'as fast as possible' - and two postural contexts - a less stable knees-together posture and more stable knees-apart posture. Weight-shifts involved anticipatory postural actions (APA) by the reaching and stance arms that were opposing in the vertical axis and aligned in the side-to-side axis similar to APAs by the legs for step initiation. Weight-shift APAs were correlated in time and magnitude, present in both speed contexts, more vigorous with the knees placed together, and similar when reaching with the dominant or non-dominant arm. The initial weight-shift was preceded by bursts of muscle activity in the shoulder and elbow extensors (posterior deltoid and triceps lateral) of the reach arm and shoulder flexor (pectoralis major) of the stance arm which indicates their causal role; leg muscles may have indirectly contributed but were not recorded. The strong functional similarity of weight-shift APAs during crouched reaching to human stepping and cats reaching suggests that they are a core feature of posture-movement coordination.


1997 ◽  
Vol 78 (1) ◽  
pp. 271-280 ◽  
Author(s):  
Mary M. Werremeyer ◽  
Kelly J. Cole

Werremeyer, Mary M. and Kelly J. Cole. Wrist action affects precision grip force. J. Neurophysiol. 78: 271–280, 1997. When moving objects with a precision grip, fingertip forces normal to the object surface (grip force) change in parallel with forces tangential to the object (load force). We investigated whether voluntary wrist actions can affect grip force independent of load force, because the extrinsic finger muscles cross the wrist. Grip force increased with wrist angular speed during wrist motion in the horizontal plane, and was much larger than the increased tangential load at the fingertips or the reaction forces from linear acceleration of the test object. During wrist flexion the index finger muscles in the hand and forearm increased myoelectric activity; during wrist extension this myoelectric activity increased little, or decreased for some subjects. The grip force maxima coincided with wrist acceleration maxima, and grip force remained elevated when subjects held the wrist in extreme flexion or extension. Likewise, during isometric wrist actions the grip force increased even though the fingertip loads remained constant. A grip force “pulse” developed that increased with wrist force rate, followed by a static grip force while the wrist force was sustained. Subjects could not suppress the grip force pulse when provided visual feedback of their grip force. We conclude that the extrinsic hand muscles can be recruited to assist the intended wrist action, yielding higher grip-load ratios than those employed with the wrist at rest. This added drive to hand muscles overcame any loss in muscle force while the extrinsic finger flexors shortened during wrist flexion motion. During wrist extension motion grip force increases apparently occurred from eccentric contraction of the extrinsic finger flexors. The coactivation of hand closing muscles with other wrist muscles also may result in part from a general motor facilitation, because grip force increased during isometric knee extension. However, these increases were related weakly to the knee force. The observed muscle coactivation, from all sources, may contribute to grasp stability. For example, when transporting grasped objects, upper limb accelerations simultaneously produce inertial torques at the wrist that must be resisted, and inertial loads at the fingertips from the object that must be offset by increased grip force. The muscle coactivation described here would cause similarly timed pulses in the wrist force and grip force. However, grip-load coupling from this mechanism would not contribute much to grasp stability when small wrist forces are required, such as for slow movements or when the object's total resistive load is small.


2002 ◽  
Vol 11 (6) ◽  
pp. 349-355
Author(s):  
Ognyan I. Kolev

Purpose: To further investigate the direction of (I) nystagmus and (II) self-motion perception induced by two stimuli: (a) caloric vestibular stimulations and (b) a sudden halt during vertical axis rotation. Subjects and methods: Twelve normal humans received caloric stimulation at 44°C, 30°C, and 20°C while in a supine position with the head inclined 30° upwards. In a second test they were rotated around the vertical axis with the head randomly placed in two positions: tilted 30° forward or tilted 60° backward, at a constant velocity of 90°/sec for 2 minutes and then suddenly stopped. After both tests they were asked to describe their sensations of self-motion. Eye movements were recorded with an infrared video-technique. Results: Caloric stimulation evoked only horizontal nystagmus in all subjects and induced a non-uniform complex perception of angular in frontal and transverse planes (the former dominated) and linear movements along the antero-posterior axis (sinking dominated) of the subject's coordinates. The self-motion was felt with the whole body or with a part of the body. Generally the perception evoked by cold (30°C) and warm (44°C) calorics was similar, although there were some differences. The stronger stimulus (20°C) evoked not only quantitative but also qualitative differences in perception. The abrupt halt of rotation induced self-motion perception and nystagmus only in the plane of rotation. The self-motion was felt with the whole body. Conclusion: There was no difference in the nystagmus evoked by caloric stimulation and a sudden halt of vertical axis rotation (in head positions to stimulate the horizontal canals); however, the two stimuli evoked different perceptions of self-motion. Calorics provoked the sensation of self-rotation in the frontal plane and linear motion, which did not correspond to the direction of nystagmus, as well as arcing and a reset phenomenon during angular and linear self-motion, caloric-induced self-motion can be felt predominantly or only with a part of the body, depending on the self-motion intensity. The findings indicate that, unlike the self-motion induced by sudden halt of vertical axis rotation, several mechanisms take part in generating caloric-induced self-motion.


2019 ◽  
Vol 121 (6) ◽  
pp. 2276-2290
Author(s):  
Trevor Lee-Miller ◽  
Marco Santello ◽  
Andrew M. Gordon

Dexterous object manipulation relies on the feedforward and feedback control of kinetics (forces) and kinematics (hand shaping and digit placement). Lifting objects with an uneven mass distribution involves the generation of compensatory moments at object lift-off to counter object torques. This is accomplished through the modulation and covariation of digit forces and placement, which has been shown to be a general feature of unimanual manipulation. These feedforward anticipatory processes occur before performance-specific feedback. Whether this adaptation is a feature unique to unimanual dexterous manipulation or general across unimanual and bimanual manipulation is not known. We investigated the generation of compensatory moments through hand placement and force modulation during bimanual manipulation of an object with variable center of mass. Participants were instructed to prevent object roll during the lift. Similar to unimanual grasping, we found modulation and covariation of hand forces and placement for successful performance. Thus this motor adaptation of the anticipatory control of compensatory moment is a general feature across unimanual and bimanual effectors. Our results highlight the involvement of high-level representation of manipulation goals and underscore a sensorimotor circuitry for anticipatory control through a continuum of force and placement modulation of object manipulation across a range of effectors. NEW & NOTEWORTHY This is the first study, to our knowledge, to show that successful bimanual manipulation of objects with asymmetrical centers of mass is performed through the modulation and covariation of hand forces and placements to generate compensatory moments. Digit force-to-placement modulation is thus a general phenomenon across multiple effectors, such as the fingers of one hand, and both hands. This adds to our understanding of integrating low-level internal representations of object properties into high-level task representations.


2020 ◽  
Vol 124 (1) ◽  
pp. 4-19 ◽  
Author(s):  
O. White ◽  
J. Gaveau ◽  
L. Bringoux ◽  
F. Crevecoeur

Humans excel at learning complex tasks, and elite performers such as musicians or athletes develop motor skills that defy biomechanical constraints. All actions require the movement of massive bodies. Of particular interest in the process of sensorimotor learning and control is the impact of gravitational forces on the body. Indeed, efficient control and accurate internal representations of the body configuration in space depend on our ability to feel and anticipate the action of gravity. Here we review studies on perception and sensorimotor control in both normal and altered gravity. Behavioral and modeling studies together suggested that the nervous system develops efficient strategies to take advantage of gravitational forces across a wide variety of tasks. However, when the body was exposed to altered gravity, the rate and amount of adaptation exhibited substantial variation from one experiment to another and sometimes led to partial adjustment only. Overall, these results support the hypothesis that the brain uses a multimodal and flexible representation of the effect of gravity on our body and movements. Future work is necessary to better characterize the nature of this internal representation and the extent to which it can adapt to novel contexts.


Sign in / Sign up

Export Citation Format

Share Document