Organization of Color-Selective Neurons in Macaque Visual Area V4

2009 ◽  
Vol 102 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Yasuyo Kotake ◽  
Hiroshi Morimoto ◽  
Yasutaka Okazaki ◽  
Ichiro Fujita ◽  
Hiroshi Tamura

Cortical area V4 in monkeys contains neurons that respond selectively to particular colors. It has been controversial how these color-selective neurons are spatially organized in V4. One view asserts that color-selective neurons are organized in columns with different colors orderly mapped across the cortex, whereas other studies have found no evidence for columnar organization or any other clustered structure. In the present study, we reexamined the functional organization of color-selective neurons in area V4 by quantitatively evaluating and comparing the color selectivity of nearby neurons as well as those encountered along electrode penetrations. Using a multiple single-unit recording technique, we recorded extracellular activities simultaneously from groups of nearby V4 neurons. Color discrimination and color preferences exhibited a moderate correlation between nearby neurons, consistent with neurons in a local region of V4 sharing similar responses to stimulus color. However, the degree of clustering was variable across recording sites. Some regions contained neurons with similar color preferences, whereas others contained neurons with diverse color preferences. Neurons in penetrations normal to the cortical surface responded to an overlapping range of colors and maintained a moderate correlation. Neurons in penetrations tangential to the cortical surface differed dramatically in their preferred color and exhibited a negative correlation. We conclude that neurons in area V4 are moderately clustered according to their color selectivity and that this weak clustering is columnar in structure.

2003 ◽  
Vol 89 (1) ◽  
pp. 246-256 ◽  
Author(s):  
Jing Liu ◽  
William T. Newsome

We analyzed the functional organization of speed tuned neurons in extrastriate visual area MT. We sought to determine whether neurons tuned for particular speeds are clustered spatially and whether such spatial clusters are elongated normal to the cortical surface so as to form speed columns. Our data showed that MT neurons are indeed clustered according to preferred speed. Multiunit recordings were speed tuned, and the speed tuning of these signals was well correlated with the speed tuning of single neurons recorded simultaneously. To determine whether speed columns exist in MT, we compared the rates at which preferred speed changed in electrode tracks that traversed MT obliquely and normally to the cortical surface. If speed columns exist, the preferred speed should change at a faster rate during oblique electrode tracks. We found, however, that preferred speed changed at similar rates for either type of penetration. In the same data set, the rate of change of preferred direction and preferred disparity differed substantially in normal and oblique penetrations as expected from the known columnar organization of MT. Thus our results suggest that a columnar organization for speed tuned neurons does not exist in MT.


1997 ◽  
Vol 77 (4) ◽  
pp. 2191-2196 ◽  
Author(s):  
Geoffrey M. Ghose ◽  
Daniel Y. Ts'O

Ghose, Geoffrey M. and Daniel Y. Ts'o. Form processing modules in primate area V4. J. Neurophysiol. 77: 2191–2196, 1997. Area V4 occupies a central position among the areas of the primate cerebral cortex involved with object recognition and analysis. Consistent with this role, neurons in V4 are selective for many visual attributes including color, orientation, and binocular disparity. However, it is uncertain whether cells within V4 are organized with respect to these properties. In this study we used in vivo optical imaging and electrophysiology in macaque visual cortex to show that cells that share certain physiological properties are indeed grouped together in V4. Our results revealed regions containing cells with common orientation selectivity. These regions were similar in size to those seen in V2 and much larger than those seen in V1 and were confirmed by appropriately targeted single-unit recording. Surprisingly, orientation organization visible through imaging was limited to the portion of V4 representing the central visual fields. Optical imaging also revealed a functional organization related to stimulus size. Size-sensitive regions (S regions) contained cells that were strongly suppressed by large stimuli. In contrast to V2, S regions in V4 contain orientation domains. These results suggest that V4 contains modular assemblies of cells related to particular aspects of form analysis. Such organization may contribute to the construction of object-based representations.


2010 ◽  
Vol 103 (5) ◽  
pp. 2433-2445 ◽  
Author(s):  
Tadashi Ogawa ◽  
Hidehiko Komatsu

Previous studies have suggested that spontaneous fluctuations in neuronal activity reflect intrinsic functional brain architecture. Inspired by these findings, we analyzed baseline neuronal activity in the monkey frontal eye field (FEF; a visuomotor area) and area V4 (a visual area) during the fixation period of a cognitive behavioral task in the absence of any task-specific stimuli or behaviors. Specifically, we examined the temporal storage capacity of the instantaneous discharge rate in FEF and V4 neurons by calculating the correlation of the spike count in a bin with that in another bin during the baseline activity of a trial. We found that most FEF neurons fired significantly more (or less) in one bin if they fired more (or less) in another bin within a trial, even when these two time bins were separated by hundreds of milliseconds. By contrast, similar long time-lag correlations were observed in only a small fraction of V4 neurons, indicating that temporal correlations were considerably stronger in FEF compared with those in V4 neurons. Additional analyses revealed that the findings were not attributable to other task-related variables or ongoing behavioral performance, suggesting that the differences in temporal correlation strength reflect differences in intrinsic structural and functional architecture between visual and visuomotor areas. Thus FEF neurons probably play a greater role than V4 neurons in neural circuits responsible for temporal storage in activity.


1993 ◽  
Vol 70 (5) ◽  
pp. 1988-2009 ◽  
Author(s):  
S. P. Dear ◽  
J. Fritz ◽  
T. Haresign ◽  
M. Ferragamo ◽  
J. A. Simmons

1. In Eptesicus the auditory cortex, as defined by electrical activity recorded from microelectrodes in response to tone bursts, FM sweeps, and combinations of FM sweeps, encompasses an average cortical surface area of 5.7 mm2. This area is large with respect to the total cortical surface area and reflects the importance of auditory processing to this species of bat. 2. The predominant pattern of organization in response to tone bursts observed in each cortex is tonotopic, with three discernible divisions revealed by our data. However, although cortical best-frequency (BF) maps from most of the individual bats are similar, no two maps are identical. The largest division contains an average of 84% of the auditory cortical surface area, with BF tonotopically mapped from high to low along the anteroposterior axis and is part of the primary auditory cortex. The medium division encompasses an average of 13% of the auditory cortical surface area, with highly variable BF organization across bats. The third region is the smallest, with an average of only 3% of auditory cortical surface area and is located at the anterolateral edge of the cortex. This region is marked by a reversal of the tonotopic axis and a restriction in the range of BFs as compared with the larger, tonotopically organized division. 3. A population of cortical neurons was found (n = 39) in which each neuron exhibited two BF threshold minima (BF1 and BF2) in response to tone bursts. These neurons thus have multipeaked frequency threshold tuning curves. In Eptesicus the majority of multipeaked frequency-tuned neurons (n = 27) have threshold minima at frequencies that correspond to a harmonic ratio of three-to-one. In contrast, the majority of multipeaked neurons in cats have threshold minima at frequencies in a ratio of three-to-two. A three-to-one harmonic ratio corresponds to the "spectral notches" produced by interference between overlapping echoes from multiple reflective surfaces in complex sonar targets. Behavioral experiments have demonstrated the ability of Eptesicus to use spectral interference notches for perceiving target shape, and this subpopulation of multipeaked frequency-tuned neurons may be involved in coding of spectral notches. 4. The auditory cortex contains delay-tuned neurons that encode target range (n = 99). Most delay-tuned neurons respond poorly to tones or individual FM sweeps and require combinations of FM sweeps. They are combination sensitive and delay tuned.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 11 (3) ◽  
pp. 176-185 ◽  
Author(s):  
H. Wijk ◽  
S. Berg ◽  
L. Sivik ◽  
B. Steen

2010 ◽  
Vol 103 (3) ◽  
pp. 1171-1178 ◽  
Author(s):  
Nicholas A. Steinmetz ◽  
Tirin Moore

The visually driven responses of macaque area V4 neurons are modulated during the preparation of saccadic eye movements, but the relationship between presaccadic modulation in area V4 and saccade preparation is poorly understood. Recent neurophysiological studies suggest that the variability across trials of spiking responses provides a more reliable signature of motor preparation than mean firing rate across trials. We compared the dynamics of the response rate and the variability in the rate across trials for area V4 neurons during the preparation of visually guided saccades. As in previous reports, we found that the mean firing rate of V4 neurons was enhanced when saccades were prepared to stimuli within a neuron's receptive field (RF) in comparison with saccades to a non-RF location. Further, we found robust decreases in response variability prior to saccades and found that these decreases predicted saccadic reaction times for saccades both to RF and non-RF stimuli. Importantly, response variability predicted reaction time whether or not there were any accompanying changes in mean firing rate. In addition to predicting saccade direction, the mean firing rate could also predict reaction time, but only for saccades directed to the RF stimuli. These results demonstrate that response variability of area V4 neurons, like mean response rate, provides a signature of saccade preparation. However, the two signatures reflect complementary aspects of that preparation.


2005 ◽  
Vol 94 (4) ◽  
pp. 2726-2737 ◽  
Author(s):  
David A. Hinkle ◽  
Charles E. Connor

We performed a quantitative characterization of binocular disparity-tuning functions in the ventral (object-processing) pathway of the macaque visual cortex. We measured responses of 452 area V4 neurons to stimuli with disparities ranging from −1.0 to +1.0°. Asymmetric Gaussian functions fit the raw data best (median R = 0.90), capturing both the modal components (local peaks in the −1.0 to +1.0° range) and the monotonic components (linear or sigmoidal dependency on disparity) of the tuning patterns. Values derived from the asymmetric Gaussian fits were used to characterize neurons on a modal × monotonic tuning domain. Points along the modal tuning axis correspond to classic tuned excitatory and inhibitory patterns; points along the monotonic axis correspond to classic near and far patterns. The distribution on this domain was continuous, with the majority of neurons exhibiting a mixed modal/monotonic tuning pattern. The distribution in the modal dimension was shifted toward excitatory patterns, consistent with previous results in other areas. The distribution in the monotonic dimension was shifted toward tuning for crossed disparities (corresponding to stimuli nearer than the fixation plane). This could reflect a perceptual emphasis on objects or object parts closer to the observer. We also found that disparity-tuning strength was positively correlated with orientation-tuning strength and color-tuning strength, and negatively correlated with receptive field eccentricity.


2016 ◽  
Vol 116 (5) ◽  
pp. 2163-2172 ◽  
Author(s):  
Takahisa M. Sanada ◽  
Tomoyuki Namima ◽  
Hidehiko Komatsu

Chromatic selectivity has been studied extensively in various visual areas at different stages of visual processing in the macaque brain. In these studies, color stimuli defined in the Derrington-Krauskopf-Lennie (DKL) color space with a limited range of cone contrast were typically used in early stages, whereas those defined in the Commission Internationale de l'Eclairage (CIE) color space, based on human psychophysical measurements across the gamut of the display, were often used in higher visual areas. To understand how the color information is processed along the visual pathway, it is necessary to compare color selectivity obtained in different areas on a common color space. In the present study, we tested whether the neural color selectivity obtained in DKL space can be predicted from responses obtained in CIE space and whether stimuli with limited cone contrast are sufficient to characterize neural color selectivity. We found that for most V4 neurons, there was a strong correlation between responses measured using the two chromatic coordinate systems, and the color selectivities obtained with the two stimulus sets were comparable. However, for some neurons preferring high- or low-saturation colors, stimuli defined in DKL color space did not adequately capture the neural color selectivity. This is mainly due to the use of stimuli within a limited range of cone contrast. We conclude that regardless of the choice of color space, the sampling of colors across the entire gamut is important to characterize neural color selectivity fully or to compare color selectivities in different areas so as to understand color representation in the visual system.


2013 ◽  
Vol 110 (42) ◽  
pp. 17095-17100 ◽  
Author(s):  
M. A. Cox ◽  
M. C. Schmid ◽  
A. J. Peters ◽  
R. C. Saunders ◽  
D. A. Leopold ◽  
...  

1969 ◽  
Vol 29 (3) ◽  
pp. 892-894 ◽  
Author(s):  
Martin S. Lindauer

Color use interpreted as preferences among the flags of 139 independent nations of the world included red, blue, green, and yellow. With one exception (green among African states), each color was equally preferred among six geographic groups of nations. In addition, white was preferred to black, colors were horizontally placed, and symbols were more likely to be present than not. These data were related to judgments made by individuals of isolated colors, to differences in inferred need achievement between countries, and to the role of language and culture in color discrimination and preference.


Sign in / Sign up

Export Citation Format

Share Document