Synchronization of GABAergic Inputs to CA3 Pyramidal Cells Precedes Seizure-Like Event Onset in Juvenile Rat Hippocampal Slices

2009 ◽  
Vol 102 (4) ◽  
pp. 2538-2553 ◽  
Author(s):  
Bálint Lasztóczi ◽  
Gabriella Nyitrai ◽  
László Héja ◽  
Julianna Kardos

Here we address how dynamics of glutamatergic and GABAergic synaptic input to CA3 pyramidal cells contribute to spontaneous emergence and evolution of recurrent seizure-like events (SLEs) in juvenile (P10-13) rat hippocampal slices bathed in low-[Mg2+] artificial cerebrospinal fluid. In field potential recordings from the CA3 pyramidal layer, a short epoch of high-frequency oscillation (HFO; 400–800 Hz) was observed during the first 10 ms of SLE onset. GABAergic synaptic input currents to CA3 pyramidal cells were synchronized and coincided with HFO, whereas the glutamatergic input lagged by ∼10 ms. If the intracellular [Cl−] remained unperturbed (cell-attached recordings) or was set high with whole cell electrode solution, CA3 pyramidal cell firing peaked with HFO and GABAergic input. By contrast, with low intracellular [Cl−], spikes of CA3 pyramidal cells lagged behind HFO and GABAergic input. This temporal arrangement of HFO, synaptic input sequence, synchrony of GABAergic currents, and pyramidal cell firing emerged gradually with preictal discharges until the SLE onset. Blockade of GABAA receptor-mediated currents by picrotoxin reduced the inter-SLE interval and the number of preictal discharges and did not block recurrent SLEs. Our data suggest that dynamic changes of the functional properties of GABAergic input contribute to ictogenesis and GABAergic and glutamatergic inputs are both excitatory at the instant of SLE onset. At the SLE onset GABAergic input contributes to synchronization and recruitment of pyramidal cells. We conjecture that this network state is reached by an activity-dependent shift in GABA reversal potential during the preictal phase.

1994 ◽  
Vol 72 (5) ◽  
pp. 2167-2180 ◽  
Author(s):  
H. E. Scharfman

1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar “mossy” cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent “failure.” The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 56 (6) ◽  
pp. 1718-1738 ◽  
Author(s):  
J. W. Swann ◽  
R. J. Brady ◽  
R. J. Friedman ◽  
E. J. Smith

Experiments were performed in order to identify the sites of epileptiform burst generation in rat hippocampal CA3 pyramidal cells. A subsequent slow field potential was studied, which is associated with afterdischarge generation. Laminar field potential and current source-density (CSD) methods were employed in hippocampal slices exposed to penicillin. Simultaneous intracellular and extracellular field recordings from the CA3 pyramidal cell body layer showed that whenever an epileptiform burst was recorded extracellularly, individual CA3 neurons underwent an intense depolarization shift. In extracellular records a slow negative field potential invariably followed epileptiform burst generation. In approximately 10% of slices, synchronous afterdischarges rode on the envelope of this negative field potential. Intracellularly a depolarizing afterpotential followed the depolarization shift and was coincident with the extracellular slow negative field potential. A one-dimensional CSD analysis performed perpendicular to the CA3 cell body layer showed that during epileptiform burst generation large current sinks occur simultaneously in the central portions of both the apical and basilar dendrites. The average distance of the peak amplitude for these sinks from the center of the cell body layer was 175 +/- 46.8 microns and 158 +/- 25.0 microns, respectively. A large current source was recorded in the cell body layer. Smaller current sources were observed in the distal portions of the dendritic layers. During the postburst slow field potential a current sink was recorded at the edge of the cell body layer in stratum oriens--a region referred to as the infrapyramidal zone. Simultaneous with the current sink recorded there, smaller sinks were often observed in the dendritic layers that appeared to be "tails" or prolongations of the currents underlying burst generation. Two-dimensional analyses of these field potentials were performed on planes parallel and perpendicular to the exposed surface of the slice. Isopotential contours showed that the direction of extracellular current is mainly orthogonal to the CA3 laminae. Correction of CSD estimates made perpendicular to the cell body layer for current flowing in the other direction did not alter the location of computed current sources and sinks. In order to show that the dendritic currents associated with epileptiform burst generation were active sinks, tetrodotoxin (TTX) was applied locally to the dendrites where the current sinks were recorded.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 70 (3) ◽  
pp. 1018-1029 ◽  
Author(s):  
M. Avoli ◽  
C. Psarropoulou ◽  
V. Tancredi ◽  
Y. Fueta

1. Extracellular field potential and intracellular recordings were made in the CA3 subfield of hippocampal slices obtained from 10- to 24-day-old rats during perfusion with artificial cerebrospinal fluid (ACSF) containing the convulsant 4-aminopyridine (4-AP, 50 microM). 2. Three types of spontaneous, synchronous activity were recorded in the presence of 4-AP by employing extracellular microelectrodes positioned in the CA3 stratum (s.) radiatum: first, inter-ictal-like discharges that lasted 0.2-1.2 s and had an occurrence rate of 0.3-1.3 Hz; second, ictal-like events (duration: 3-40 s) that occurred at 4-38 x 10(-3) Hz; and third, large-amplitude (up to 8 mV) negative-going potentials that preceded the onset of the ictal-like events and thus appeared to initiate them. 3. None of these synchronous activities was consistently modified by addition of antagonists of the N-methyl-D-aspartate (NMDA) receptor to the ACSF. In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 2-10 microM) reversibly blocked interictal- and ictallike discharges. The only synchronous, spontaneous activity recorded in this type of medium consisted of the negative-going potentials that were abolished by the GABAA receptor antagonists bicuculline methiodide (5-20 microM) or picrotoxin (50 microM). Hence they were mediated through the activation of the GABAA receptor. 4. Profile analysis of the 4-AP-induced synchronous activity revealed that the gamma-aminobutyric acid (GABA)-mediated field potential had maximal negative amplitude in s. lacunosum-moleculare, attained equipotentiality at the border between s. radiatum and s. pyramidale, and became positive-going in s. oriens. These findings indicated that the GABA-mediated field potential presumably represented a depolarization occurring in the dendrites of CA3 pyramidal cells. 5. This conclusion was supported by intracellular analysis of the 4-AP-induced activity. The GABA-mediated potential was reflected by a depolarization of the membrane of CA3 pyramidal cells that triggered a few variable-amplitude, fractionated spikes or fast action potentials. By contrast, the ictal-like discharge was associated with a prolonged depolarization during which repetitive bursts of action potentials occurred. Short-lasting depolarizations with bursts of action potentials occurred during each interictal-like discharge. 6. The GABA-mediated potential recorded intracellularly in the presence of CNQX consisted of a prolonged depolarization (up to 12 s) that was still capable of triggering a few fast action potentials and/or fractionated spikes.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 91 (6) ◽  
pp. 2849-2858 ◽  
Author(s):  
Ildiko Aradi ◽  
Vijayalakshmi Santhakumar ◽  
Ivan Soltesz

Previous computational modeling studies suggested a set of rules underlying the modulation of principal cell firing rates by heterogeneity in the synaptic parameters (peak amplitude and decay kinetics) of populations of GABAergic inputs. Here we performed dynamic clamp experiments in CA1 hippocampal pyramidal cells to test these ideas in biological neurons. In agreement with the simulation studies, the effects of increasing the event-to-event variance in a population of perisomatically injected inhibitory postsynaptic current (IPSC) peak conductances caused either an increase, decrease, or no change in the firing rates of CA1 pyramidal cells depending on the mean around which the scatter was introduced, the degree of the scatter, the depolarization that the pyramidal cell received, and the IPSC reversal potential. In contrast to CA1 pyramidal cells, both model and biological CA3 pyramidal cells responded with bursts of action potentials to sudden, step-wise alterations in input heterogeneity. In addition, injections of 40-Hz IPSC conductances together with θ-modulated depolarizing current inputs to CA1 pyramidal cells demonstrated that the principles underlying the modulation of pyramidal cell excitability by heterogeneous IPSC populations also apply during membrane potential oscillations. Taken together, these experimental results and the computational modeling data show the existence of simple rules governing the interactions of heterogeneous interneuronal inputs and principal cells.


1997 ◽  
Vol 78 (5) ◽  
pp. 2582-2591 ◽  
Author(s):  
Karri Lamsa ◽  
Kai Kaila

Lamsa, Karri and Kai Kaila. Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine. J. Neurophysiol. 78: 2582–2591, 1997. Ion-selective (H+ and K+) microelectrode techniques as well as conventional extra- and intracellular recordings were used to study the ionic mechanisms of propagating spontaneous GABAergic events (SGEs) in rat hippocampal slices exposed to 4-aminopyridine (4-AP, 50–100 μM). All experiments were made in the presence of antagonists of ionotropic glutamate receptors [10 μM 6-nitro-7-sulphamoylbenzoquinoxaline-2,3-dione (NBQX) and 40 μM dl-2-amino-5-phosphonopentanoic acid (AP5)]. The SGEs were composed of a negative-going change in field potential with a temporally coincident increase (0.7 ± 0.3 mM; mean ± SE) in extracellular K+ ([K+]o) and an alkaline transient (0.01–0.08 units) in extracellular pH (pHo) in stratum radiatum of the area CA1. Simultaneous intracellular recordings showed a triphasic hyperpolarization-depolarization–late hyperpolarization response in pyramidal cells. Application of pentobarbital sodium (PB, 100 μM) decreased the interval between SGEs from a mean value of 35 to ∼20 s and shortened the period of refractoriness of stimulus-evoked propagating events. This was accompanied by an increase in the amplitude of the field potential response of the [K+]o and the pHo shifts and of the depolarizing phase of the pyramidal-cell response. The SGEs were completely blocked by the γ-aminobutyric acid-A (GABAA) receptor antagonist, picrotoxin (PiTX; 100 μM). The amplitudes of the negative-going field potential and of the depolarizing phase of the pyramidal-cell response as well as the ionic shifts associated with SGEs were strongly suppressed in the nominal absence of CO2/HCO− 3. There was a five-fold increase in the interevent interval, and propagating SGEs could not be evoked by stimuli given at intervals shorter than ∼2–3 min. Exposure to inhibitors of carbonic anhydrase, benzolamide (BA; 10 μM) or ethoxyzolamide (EZA; 50 μM) fully blocked the alkaline pHo transients and turned them into acid shifts. The poorly membrane-permeant BA had no discernible effect on the other components of the SGEs, but application of EZA had effects reminiscent to those of CO2/HCO− 3-free medium. Addition of the GABAA receptor–permeant weak-acid anion, formate (20 mM) reestablished the SGEs that were first suppressed by exposure to the CO2/HCO− 3-free medium. No SGEs were seen in the presence of a similar concentration of the GABAA receptor–impermeant anion propionate. Unlike the alkaline transients associated with HCO− 3-driven SGEs, those supported by formate were not blocked by BA. The present data suggest that an inward current carried by bicarbonate is necessary for the generation of SGEs and that the GABAA receptor–mediated excitatory coupling among GABAergic interneurons is essentially dependent on the availability of intracellular bicarbonate.


1986 ◽  
Vol 56 (2) ◽  
pp. 409-423 ◽  
Author(s):  
A. Konnerth ◽  
U. Heinemann ◽  
Y. Yaari

Epileptiform activity induced in rat hippocampal slices by lowering extracellular Ca2+ concentration ([Ca2+]o) was studied with extracellular and intracellular recordings. Perfusing the slices with low Ca2+ (less than or equal to 0.2 mM) or EGTA-containing solutions blocked the synaptic responses of hippocampal pyramidal cells (HPCs). Despite the block, spontaneous paroxysms, termed seizurelike events (SLEs), appeared in the CA1 area and then recurred regularly at a stable frequency. Transient hypoxia accelerated their development and increased their frequency. When [Ca2+]o was raised in a stepwise manner, the SLEs disappeared at 0.3 mM. With extracellular recording from the CA1 stratum pyramidale, a SLE was characterized by a large negative shift in the field potential, which lasted for several seconds. During this period a large population of CA1 neurons discharged intensely and often in synchrony, as concluded from the frequent appearance of population spikes. Synchronization, however, was not a necessary precursor for the development of paroxysmal activity, but seemed to be the end result of massive neuronal excitation. The cellular counterpart of a SLE, as revealed by intracellular recording from HPCs in the discharge zone of the paroxysms, was a long-lasting depolarization shift (LDS) of up to 20 mV. This was accompanied by accelerated firing of the neuron. A prolonged after-hyperpolarization succeeded each LDS and arrested cell firing. Brief (approximately 50 ms) bursts were commonly observed before LDS onset. Single electrical stimuli applied focally to the stratum pyramidale or alveus evoked paroxysms identical to the spontaneous SLEs, provided they surpassed a critical threshold intensity. Subthreshold stimuli elicited only small local responses, whereas stimuli of varied suprathreshold intensities evoked the same maximal SLEs. Thus the buildup of a SLE is an all or nothing or a regenerative process, which mobilizes the majority, if not all, of the local neuronal population. Each SLE was followed by absolute and relative refractory periods during which focal stimulation was, respectively, ineffective and less effective in evoking a maximal SLE. In most slices the spontaneous SLEs commenced at a "focus" located in the CA1a subarea (near the subiculum). SLEs evoked by focal stimulation arose near the stimulating electrode. From their site of origin the paroxysmal discharges spread transversely through the entire CA1 area at a mean velocity of 1.74 mm/s. Consequently, the discharge zone of a SLE could encompass for several seconds the entire CA1 area.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (5) ◽  
pp. 2964-2972 ◽  
Author(s):  
Roman Tyzio ◽  
Anton Ivanov ◽  
Cristophe Bernard ◽  
Gregory L. Holmes ◽  
Yehezkiel Ben-Ari ◽  
...  

A depolarized resting membrane potential has long been considered to be a universal feature of immature neurons. Despite the physiological importance, the underlying mechanisms of this developmental phenomenon are poorly understood. Using perforated-patch, whole cell, and cell-attached recordings, we measured the membrane potential in CA3 pyramidal cells in hippocampal slices from postnatal rats. With gramicidin perforated-patch recordings, membrane potential was –44 ± 4 (SE) mV at postnatal days P0–P2, and it progressively shifted to –67 ± 2 mV at P13–15. A similar developmental change of the membrane potential has been also observed with conventional whole cell recordings. However, the value of the membrane potential deduced from the reversal potential of N-methyl-d-aspartate channels in cell-attached recordings did not change with age and was –77 ± 2 mV at P2 and –77 ± 2 mV at P13–14. The membrane potential measured using whole cell recordings correlated with seal and input resistance, being most depolarized in neurons with high, several gigaohms, input resistance and low seal resistance. Simulations revealed that depolarized values of the membrane potential in whole cell and perforated-patch recordings could be explained by a shunt through the seal contact between the pipette and membrane. Thus the membrane potential of CA3 pyramidal cells appears to be strongly negative at birth and does not change during postnatal development.


2005 ◽  
Vol 93 (5) ◽  
pp. 2656-2667 ◽  
Author(s):  
Joshua T. Kantrowitz ◽  
N. Noelle Francis ◽  
Alejandro Salah ◽  
Katherine L. Perkins

In the presence of 4-aminopyridine, interneurons fire synchronously, causing giant GABA-mediated postsynaptic potentials (GPSPs; GPSCs in voltage clamp) in CA3 pyramidal cells in hippocampal slices from adult guinea pigs. These triphasic GPSPs are composed of a GABAA-mediated hyperpolarizing component, a depolarizing component, and a GABAB-mediated hyperpolarizing component. We propose that GABAB receptors exert control over the postsynaptic depolarizing GABA response. Microelectrode and cell-attached recordings demonstrated that the mean number of action potentials during the depolarizing component of the GPSP increased dramatically in the presence of the GABAB receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2- hydroxypropyl](phenylmethyl) phosphinic acid (CGP 55845A; P = 0.003 and 0.0005, respectively). Whole cell voltage-clamp recordings showed that the postsynaptic GABAB and depolarizing GABA components of the GPSC overlap substantially, allowing the GABAB-mediated hyperpolarization to suppress the excitation mediated by the depolarizing GABA component. Further voltage-clamp recordings showed that CGP 55845A increased the duration of the depolarizing GABA component of the GPSC even when the GABAB component had already been blocked by internal QX-314, suggesting that CGP 55845A also increased the duration of GABA release. When glutamatergic transmission is intact, GPSPs directly precede epileptiform afterdischarges. We hypothesize that the depolarizing component of the GPSP triggers the epileptiform events and show here that enhancement of the depolarizing component with CGP 55845A increased epileptiform activity. CGP 55845A increased the likelihood of a GPSP triggering an epileptiform event from 32 to 99% ( P = 0.0000001), and significantly increased the number of afterdischarges per epileptiform event ( P = 0.001). Loss of GABAB receptor function is associated with temporal lobe epilepsy in rodents and humans. We show here that GABAB receptors exert control over the synaptic depolarizing GABA response and that block of GABAB receptors makes the depolarizing GABA response excitatory and proconvulsive.


2007 ◽  
Vol 98 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Jay Spampanato ◽  
Istvan Mody

Network activity in the 200- to 600-Hz range termed high-frequency oscillations (HFOs) has been detected in epileptic tissue from both humans and rodents and may underlie the mechanism of epileptogenesis in experimental rodent models. Slower network oscillations including theta and gamma oscillations as well as ripples are generated by the complex spike timing and interactions between interneurons and pyramidal cells of the hippocampus. We determined the activity of CA3 pyramidal cells, stratum oriens lacunosum-moleculare (O-LM) and s. radiatum lacunosum-moleculare (R-LM) interneurons during HFO in the in vitro low-Mg2+ model of epileptiform activity in GIN mice. In these animals, interneurons can be identified prior to cell-attached recordings by the expression of green-fluorescent protein (GFP). Simultaneous local field potential recordings from s. pyramidale and on-cell recordings of individual interneurons and principal cells revealed three primary firing behaviors of the active cells: 36% of O-LM interneurons and 60% of pyramidal cells fired action potentials at high frequencies during the HFO. R-LM interneurons were biphasic in that they fired at high frequency at the beginning of the HFO but stopped firing before its end. When considering only the highest frequency component of the oscillations most pyramidal cells fired on the rising phase of the oscillation. These data provide evidence for functional distinction during HFOs within otherwise homogeneous groups of O-LM interneurons and pyramidal cells.


Sign in / Sign up

Export Citation Format

Share Document