scholarly journals Expression profiling of antisense transcripts on DNA arrays

2007 ◽  
Vol 28 (3) ◽  
pp. 294-300 ◽  
Author(s):  
Andreas Werner ◽  
Gabriele Schmutzler ◽  
Mark Carlile ◽  
Colin G. Miles ◽  
Heiko Peters

The majority of mouse genes are estimated to undergo bidirectional transcription; however, their tissue-specific distribution patterns and physiological significance are largely unknown. This is in part due to the lack of methodology to routinely assess the expression of natural antisense transcripts (NATs) on a large scale. Here we tested whether commercial DNA arrays can be used to monitor antisense transcription in mouse kidney and brain. We took advantage of the reversely annotated oligonucleotides on the U74 mouse genome array from Affymetrix that hybridize to NATs overlapping with the sense transcript in the area of the probe set. In RNA samples from mouse kidney and brain, 11.9% and 10.1%, respectively, of 5,652 potential NATs returned positive and about half of the antisense RNAs were detected in both tissues, which was similar to the fraction of sense transcripts expressed in both tissues. Notably, we found that the majority of NATs are related to the sense transcriptome since corresponding sense transcripts were detected for 92.5% (kidney) and 74.5% (brain) of the detected antisense RNAs. Antisense RNA transcription was confirmed by real-time PCR and included additional RNA samples from heart, thymus, and liver. The randomly selected transcripts showed tissue specific expression patterns and varying sense/antisense ratios. The results indicate that antisense transcriptomes are tissue specific, and although pairing of sense/antisense transcripts are known to result in rapid degradation, our data provide proof of principle that the sensitivity of commercial DNA arrays is sufficient to assess NATs in total RNA of whole organs.

2013 ◽  
Author(s):  
AL Bookout ◽  
Y Jeong ◽  
M Downes ◽  
RT Yu ◽  
RM Evans ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Voddu Suresh ◽  
Deepti Parida ◽  
Aliva P. Minz ◽  
Manisha Sethi ◽  
Bhabani S. Sahoo ◽  
...  

The Syrian golden hamster (Mesocricetus auratus) has recently been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers these models’ optimal use. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin-converting enzyme 2, a proven functional receptor for SARS-CoV-2 in different organs of the hamster. Using two different antibodies (MA5-32307 and AF933), we have conducted immunoblotting, immunohistochemistry, and immunofluorescence analysis to evaluate the ACE2 expression in different tissues of the hamster. Further, at the mRNA level, the expression of Ace2 in tissues was evaluated through RT-qPCR analysis. Both the antibodies detected expression of ACE2 in kidney, small intestine, tongue, and liver. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine were negative for ACE2 expression. Analysis of tissues from different age groups and sex didn’t show any obvious difference in ACE2 expression pattern or level. Together, our findings corroborate some of the earlier reports related to ACE2 expression patterns in human tissues and contradict others. We believe that this study’s findings have provided evidence that demands further investigation to understand the predominant respiratory pathology of SARS-CoV-2 infection and disease.


2021 ◽  
Author(s):  
Dandan Zhao ◽  
Tadiyose Girma Bekele ◽  
Hongxia Zhao

Abstract Benzotriazole ultraviolet stabilizers (BUVSs) have received increasing attention due to their widespread usage, ubiquitous detection and their adverse ecological effect. However, information about the bioaccumulation potential of BUVSs and their joint exposure with heavy metals remains scarce. In this study, we investigated the bioaccumulation kinetics of 6 frequently reported BUVSs in common carp under different Cu concentration for 48 d, and their tissue-specific distribution patterns (liver, kidney, gill, and muscle tissues) were also evaluated. The bioconcentration factors (BCFs) and half-lives (t1/2) in the tissues ranged from 5.73 (UV-PS) to 1076 (UV-327), and 2.19 (UV-PS) to 31.5 (UV-320) days, respectively. The tissue-specific concentration and BCF values followed the order of liver > kidney > gill > muscle with or without Cu exposure. An increase in BCF with rising Cu concentration was observed, which is caused by the decreased depuration rate (k2) in more than half of treatment groups. These results indicated that BUVSs accumulated in fish and provides important insight into the risk assessment of this group of chemicals.


Author(s):  
Zsolt Albert ◽  
Cs. Deák ◽  
A. Miskó ◽  
M. Tóth ◽  
I. Papp

Wax production is an important aspect of apple (Malus domestica Borkh.) fruit development from both theoretical and practical point of views. The complex molecular mechanism that controls wax biosynthesis is still widely unknown but many studies focused on this topic. We aimed to develop further the experimental framework of these efforts with a description of an improved reference genes expression system. Results in the literature show that similarities exist among the expression of some housekeeping genes of different plant species. Based on these considerations and on gene expression data from Arabidopsis thaliana, some genes in apple were assigned for analysis. EST sequences of apple were used to design specific primers for RT-PCR experiments. Isolation of intact RNA from different apple tissues and performing RT-PCR reaction were also key point in obtaining expression patterns. To monitor DNA contamination of the RNA samples, specific primers were used that amplify intron-containing sequences from the cDNA. We found that actin primers can be used for the detection of intron containing genomic DNA, and tubulin primers are good internal controls in RT-PCR experiments. We were able to make a difference between tissue-specific and tissue-independent gene-expression, furthermore we found tissue specific differences between the expression patterns of candidate genes, that are potentially involved in wax-biosynthesis. Our results show that KCS1 and KCS4 are overexpressed in the skin tissue, this could mean that these genes have skin-specific expression in apple fruit.


2019 ◽  
Vol 10 (1) ◽  
pp. 235-246 ◽  
Author(s):  
Johanna Kurko ◽  
Paul V. Debes ◽  
Andrew H. House ◽  
Tutku Aykanat ◽  
Jaakko Erkinaro ◽  
...  

Despite recent taxonomic diversification in studies linking genotype with phenotype, follow-up studies aimed at understanding the molecular processes of such genotype-phenotype associations remain rare. The age at which an individual reaches sexual maturity is an important fitness trait in many wild species. However, the molecular mechanisms regulating maturation timing processes remain obscure. A recent genome-wide association study in Atlantic salmon (Salmo salar) identified large-effect age-at-maturity-associated chromosomal regions including genes vgll3, akap11 and six6, which have roles in adipogenesis, spermatogenesis and the hypothalamic-pituitary-gonadal (HPG) axis, respectively. Here, we determine expression patterns of these genes during salmon development and their potential molecular partners and pathways. Using Nanostring transcription profiling technology, we show development- and tissue-specific mRNA expression patterns for vgll3, akap11 and six6. Correlated expression levels of vgll3 and akap11, which have adjacent chromosomal location, suggests they may have shared regulation. Further, vgll3 correlating with arhgap6 and yap1, and akap11 with lats1 and yap1 suggests that Vgll3 and Akap11 take part in actin cytoskeleton regulation. Tissue-specific expression results indicate that vgll3 and akap11 paralogs have sex-dependent expression patterns in gonads. Moreover, six6 correlating with slc38a6 and rtn1, and Hippo signaling genes suggests that Six6 could have a broader role in the HPG neuroendrocrine and cell fate commitment regulation, respectively. We conclude that Vgll3, Akap11 and Six6 may influence Atlantic salmon maturation timing via affecting adipogenesis and gametogenesis by regulating cell fate commitment and the HPG axis. These results may help to unravel general molecular mechanisms behind maturation.


2001 ◽  
Vol 11 (5) ◽  
pp. 677-684
Author(s):  
Yutaka Suzuki ◽  
Tatsuhiko Tsunoda ◽  
Jun Sese ◽  
Hirotoshi Taira ◽  
Junko Mizushima-Sugano ◽  
...  

To understand the mechanism of transcriptional regulation, it is essential to identify and characterize the promoter, which is located proximal to the mRNA start site. To identify the promoters from the large volumes of genomic sequences, we used mRNA start sites determined by a large-scale sequencing of the cDNA libraries constructed by the “oligo-capping” method. We aligned the mRNA start sites with the genomic sequences and retrieved adjacent sequences as potential promoter regions (PPRs) for 1031 genes. The PPR sequences were searched to determine the frequencies of major promoter elements. Among 1031 PPRs, 329 (32%) contained TATA boxes, 872 (85%) contained initiators, 999 (97%) contained GC box, and 663 (64%) contained CAAT box. Furthermore, 493 (48%) PPRs were located in CpG islands. This frequency of CpG islands was reduced in TATA+/Inr+PPRs and in the PPRs of ubiquitously expressed genes. In the PPRs of the CGM2 gene, the DRA gene, and theTM30pl genes, which showed highly colon specific expression patterns, the consensus sequences of E boxes were commonly observed. The PPRs were also useful for exploring promoter SNPs.[The nucleotide sequences described in this paper have been deposited in the DDBJ, EMBL, and GenBank data libraries under accession nos.AU098358–AU100608.]


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4622-4631 ◽  
Author(s):  
William L. Stanford ◽  
Georgina Caruana ◽  
Katherine A. Vallis ◽  
Maneesha Inamdar ◽  
Michihiro Hidaka ◽  
...  

Abstract We have developed a large-scale, expression-based gene trap strategy to perform genome-wide functional analysis of the murine hematopoietic and vascular systems. Using two different gene trap vectors, we have isolated embryonic stem (ES) cell clones containing lacZreporter gene insertions in genes expressed in blood island and vascular cells, muscle, stromal cells, and unknown cell types. Of 79 clones demonstrating specific expression patterns, 49% and 16% were preferentially expressed in blood islands and/or the vasculature, respectively. The majority of ES clones that expressedlacZ in blood islands also expressed lacZ upon differentiation into hematopoietic cells on OP9 stromal layers. Importantly, the in vivo expression of the lacZ fusion products accurately recapitulated the observed in vitro expression patterns. Expression and sequence analysis of representative clones suggest that this approach will be useful for identifying and mutating novel genes expressed in the developing hematopoietic and vascular systems.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3979-3979
Author(s):  
Sergei Merkoulov ◽  
Anton A. Komar ◽  
Keith R. McCrae

Abstract High molecular weight kininogen (HK) plays an important role in the assembly and activation of the kallikrein/kinin system. While the human genome contains only a single copy of the kininogen gene, three copies are present in the rat (one K-kininogen and two T-kininogen). Here, we report that the mouse genome contains two homologous kininogen genes (overall homology 91%), denoted mHK1 and mHK2. Both genes are located on chromosome 16 in a head-to-head orientation, and contain open reading frames. The size of intronic sequences between the 11 kininogen gene exons is similar (Figure). HK mRNA transcripts derived from the mHK1 and mHK2 genes differ slightly in size due to gaps of 33 and 18 nucleotides in exon 10 of mHK2. RT-PCR analysis of HK gene expression in adult and embryonic murine tissues revealed that HK mRNA was derived from mHK1 in liver, adrenal and embryo, but from mHK2 in kidney and lung. HK mRNA derived from both genes was present in testis, brain and muscle, though expression levels were low relative to those in other tissues. HK mRNA was not detected in ovary, bone marrow, heart or bladder. mHK1-derived HK mRNA was alternatively spliced, as demonstrated by the presence of an HK mRNA transcript encoding a novel HK1 isoform, ΔmD5, that lacked the portion of exon 10 encoding Thr400 - Asp582 of HK domains 5 and 6. Examination of the putative promoter regions of the two genes using the MatInspector Professional program (Genomatix) demonstrated distinct differences, perhaps explaining in part their tissue-specific expression patterns. Like domain 5 of human HK (hD5), domain 5 of murine HK (mD5), in which the histidine and lysine-rich C-terminal region of this domain previously shown to mediate the antiangiogenic activity of domain 5 is highly conserved, inhibited endothelial cell proliferation. While the function of each of the kininogen genes in the intact animal has yet to be defined, characterization of the two genes may provide new information concerning the role of high molecular weight kininogen in development, normal physiology, and pathological processes. Figure Figure


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4622-4631 ◽  
Author(s):  
William L. Stanford ◽  
Georgina Caruana ◽  
Katherine A. Vallis ◽  
Maneesha Inamdar ◽  
Michihiro Hidaka ◽  
...  

We have developed a large-scale, expression-based gene trap strategy to perform genome-wide functional analysis of the murine hematopoietic and vascular systems. Using two different gene trap vectors, we have isolated embryonic stem (ES) cell clones containing lacZreporter gene insertions in genes expressed in blood island and vascular cells, muscle, stromal cells, and unknown cell types. Of 79 clones demonstrating specific expression patterns, 49% and 16% were preferentially expressed in blood islands and/or the vasculature, respectively. The majority of ES clones that expressedlacZ in blood islands also expressed lacZ upon differentiation into hematopoietic cells on OP9 stromal layers. Importantly, the in vivo expression of the lacZ fusion products accurately recapitulated the observed in vitro expression patterns. Expression and sequence analysis of representative clones suggest that this approach will be useful for identifying and mutating novel genes expressed in the developing hematopoietic and vascular systems.


Sign in / Sign up

Export Citation Format

Share Document