Gene expression profiling of cerebellar development with high-throughput functional analysis

2005 ◽  
Vol 22 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Sakae Saito ◽  
Kimi Honma ◽  
Hiroko Kita-Matsuo ◽  
Takahiro Ochiya ◽  
Kikuya Kato

We measured the expression levels of 450 genes during mouse postnatal cerebellar development by quantitative PCR using RNA purified from layers of the cerebellar cortex. Principal component analysis of the data matrix demonstrated that the first and second components corresponded to general levels of gene expression and gene expression patterns, respectively. We introduced 288 of the 450 genes into PC12 cells using a high-throughput transfection assay based on atelocollagen and determined the ability of each gene to promote neurite outgrowth or cell proliferation. Five genes induced neurite outgrowth, and seven genes enhanced proliferation. Evaluation of the functional data and gene expression patterns showed that none of these genes exhibited elevated expression at maturation, suggesting that genes characteristic of mature neurons are not likely to participate in neuronal development. These results demonstrate that functional data can facilitate interpretation of expression profiles and identification of new molecules that participate in biological processes.

2007 ◽  
Vol 292 (1) ◽  
pp. G298-G304 ◽  
Author(s):  
Claudio Csillag ◽  
Ole Haagen Nielsen ◽  
Rehannah Borup ◽  
Finn Cilius Nielsen ◽  
Jørgen Olsen

The clinical course varies significantly among patients with Crohn's disease (CD). This study investigated whether gene expression profiles generated by DNA microarray technology might predict disease progression. Biopsies from the descending colon were obtained colonoscopically from 40 CD patients. Gene profiling analyses were performed using a Human Genome U133 Plus 2.0 GeneChip Array, and summarization into a single expression measure for each probe set was performed using the robust multiple array procedure. Principal component analysis demonstrated that three components explain two-thirds of the total variation. The most important parameters for the determination of the colonic gene expression patterns were the presence of disease (CD) and presence of inflammation. Superimposition of clinical phenotype data revealed a grouping of the samples from patients with stenosis toward negative values on the axis of the second principal component. The functional annotation analysis suggested that the expression of genes involved in intracellular transport and cytoskeletal organization might influence the development of stenosis. In conclusion, even though most variation in the colonic gene expression patterns is due to presence or absence of CD and inflammation status, the development of stenosis is a parameter that affects colonic gene expression to some extent.


2021 ◽  
Vol 22 (4) ◽  
pp. 1901
Author(s):  
Brielle Jones ◽  
Chaoyang Li ◽  
Min Sung Park ◽  
Anne Lerch ◽  
Vimal Jacob ◽  
...  

Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S210-S210
Author(s):  
Mary T Caserta ◽  
Lu Wang ◽  
Chin-Yi Chu ◽  
Christopher Slaunwhite ◽  
Jeanne Holden-Wiltse ◽  
...  

Abstract Background RSV infection is common in infants with a majority of those affected displaying mild clinical symptoms. However, a substantial number develop severe symptoms requiring hospitalization. We currently lack sensitive and specific predictors to identify a majority of those who develop severe disease. Methods High throughput RNA sequencing (RNAseq) of nasal epithelial cells defined airway gene expression patterns in RSV-infected subjects. Using multivariate linear regression analysis with AIC-based model selection, we built a sparse linear predictor of RSV disease severity, the Nasal Gene Severity Score-NGSS1. Using a similar statistical approach, we built an alternate predictor based upon genes displaying stable expression over time (NGSS2). We evaluated predictive performance of both models using leave-one-out cross-validation analyses. Results We defined comprehensive airway gene expression profiles from 106 full-tem previously healthy RSV-infected subjects with a range of RSV disease severity prospectively enrolled in the AsPIRES study. Nasal samples were obtained during acute infection (day 1–10 of illness; 106 samples), and convalescence (day 14–28 of illness; 69 samples). All subjects had a primary infection and were assigned a cumulative clinical illness severity score (GRSS) (Table 1). From the RNA seq data 41 genes were identified as the NGSS1 which is strongly correlated with disease severity (GRSS) in both the naive (ρ=0.935) and cross-validated analysis (ρ of 0.813). As a binary classifier (mild vs. severe), NGSS1 correctly classifies 89.6% of the subjects following cross-validation (Figure 1). Next, we evaluated genes that were stably expressed in both acute illness and convalescence samples in 54 subjects with data from both time points. Repeating the regression based step wise model selection identified 13 genes as NGSS2, which was significantly correlated with GRSS (ρ = 0.741). This model has slightly less, but comparable, prediction accuracy with a cross-validated correlation of 0.741 and cross-validated classification accuracy of 84.0% (Figure 2). Conclusion Airway gene expression patterns, obtained following a minimally-invasive nasal procedure, have potential utility as prognostic biomarkers for severe infant RSV infections. Disclosures All authors: No reported disclosures.


2008 ◽  
Vol 20 (1) ◽  
pp. 165
Author(s):  
X. S. Cui ◽  
X. Y. Li ◽  
T. Kim ◽  
N.-H. Kim

Trichostatin A (TSA) is an inhibitor of histone deacetylase and is able to alter gene expression patterns by interfering with the removal of acetyl groups from histones. The aim of this study was to determine the effect of TSA treatment on the development and gene expression patterns of mouse zygotes developing in vitro. The addition of 100 nm TSA to the culture medium did not affect the cleavage of mouse embryos (TSA treatment, 148/150 (99%) v. control, 107/107 (100%)); however, embryos that were treated with TSA arrested at the 2-cell stage (145/148, 98%). We estimated the number of nuclei in control and TSA-treated embryos by propidium iodide staining, taking into account the presence of any cells with two or more nuclei. At 62–63 h post-hCG stimulation, control zygotes had developed to the 4-cell stage and exhibited one nucleus in each blastomere, indicative of normal development. In contrast, we observed tetraploid nuclei in at least one blastomere in 20.8% (11/53) of the embryos that had been treated with TSA. At 28–29 h post-hCG stimulation (metaphase of the 1-cell stage), there was no difference in the mitotic index (as determined by analyzing the microtubule configuration) in the TSA group compared to the control group. At the 2-cell stage, however, we did not observe mitotic spindles and metaphase chromatin in embryos in the TSA treatment group compared to the controls. Interestingly, when embryos were cultured in TSA-free medium from 35 h post-hCG stimulation (S- or early G2-phase of the 2-cell stage) onward, almost all of them (47/50) developed to the blastocyst stage. In contrast, when embryos were cultured in TSA-free medium from 42 h post-hCG stimulation (middle G2-phase of the 2-cell stage) onward, they did not develop to the 4-cell stage. We used Illumina microarray technology to analyze the gene expression profiles in control and TSA-treated late 2-cell-stage embryos. Applied Biosystems Expression System software was used to extract assay signals and assay signal-to-noise ratio values from the microarray images. Our data showed that 897 genes were significantly (P < 0.05; 2-sample t-test) up- or down-regulated by TSA treatment compared to controls. Analysis using the PANTHER classification system (https://panther.appliedbiosystems.com) revealed that the 575 genes that were differentially expressed in the TSA group compared to the control were classified as being associated with putative biological processes or molecular function. Overall, in terms of putative biological processes, more nucleoside, nucleotide, and nucleic acid metabolism, protein metabolism and modification, signal transduction, developmental process, and cell cycle genes were differentially expressed between the TSA and control groups. In terms of putative molecular function, more nucleic acid-binding transcription factor and transferase genes were differentially expressed between the groups. The results collectively suggest that inhibition of histone acetylation in mouse embryos affects gene expression profiles at the time of zygotic genome activation, and this subsequently affects further development.


Author(s):  
Marco Busnelli ◽  
Stefano Manzini ◽  
Matteo Chiara ◽  
Alice Colombo ◽  
Fabrizio Fontana ◽  
...  

Objective: HDL (high-density lipoprotein) particles are known to possess several antiatherogenic properties that include the removal of excess cholesterol from peripheral tissues, the maintenance of endothelial integrity, antioxidant, and anti-inflammatory activities. ApoA-I overexpression in apoE-deficient (EKO) mice has been shown to increase HDL levels and to strongly reduce atherosclerosis development. The aim of the study was to investigate gene expression patterns associated with atherosclerosis development in the aorta of EKO mice and how HDL plasma levels relate to gene expression patterns at different stages of atherosclerosis development and with different dietary treatments. Approach and Results: Eight-week-old EKO mice, EKO mice overexpressing human apoA-I, and wild-type mice as controls were fed either normal laboratory or Western diet for 6 or 22 weeks. Cholesterol distribution among lipoproteins was evaluated, and atherosclerosis of the aorta was quantified. High-throughput sequencing technologies were used to analyze the transcriptome of the aorta of the 3 genotypes in each experimental condition. In addition to the well-known activation of inflammation and immune response, the impairment of sphingolipid metabolism, phagosome-lysosome system, and osteoclast differentiation emerged as relevant players in atherosclerosis development. The reduced atherosclerotic burden in the aorta of EKO mice expressing high levels of apoA-I was accompanied by a reduced activation of immune system markers, as well as reduced perturbation of lysosomal activity and a better regulation of the sphingolipid synthesis pathway. Conclusions: ApoA-I modulates atherosclerosis development in the aorta of EKO mice affecting the expression of pathways additional to those associated with inflammation and immune response.


2016 ◽  
Vol 57 (3-4) ◽  
pp. 197-210 ◽  
Author(s):  
Sabrina Ehnert ◽  
Romina Haydée Aspera-Werz ◽  
Thomas Freude ◽  
Marie Karolina Reumann ◽  
Björn Gunnar Ochs ◽  
...  

Background: Bone morphogenetic proteins (BMPs) play a key role in bone formation. Local application of BMP2 (Dibotermin alfa) supports bone formation when applied to complex fractures. However, up to 33% of patients do not respond to this therapy. Purpose: Aiming to investigate whether inter-individual responses to BMP2 treatment can be predicted by gene expression patterns, we investigated the effect of BMP2 on primary human osteoblasts and THP-1 cell-derived osteoclasts from 110 donors. Methods: Osteoblasts were obtained by collagenase digestion of spongy bone tissues. Osteoclasts were differentiated from THP-1 cells using the conditioned media of the osteoblasts. Viability was determined by resazurin conversion. As functional characteristics AP and Trap5B activity were measured. Gene expression levels were determined by RT-PCR in 21 of the 110 evaluated donors and visualized by electrophoresis. Results: Based on our data, we could classify three response groups: (i) In 51.8% of all donors, BMP2 treatment induced osteoblast function. These donors strongly expressed the BMP2 inhibitor Noggin (NOG), the alternative BMP2 receptors repulsive guidance molecule B (RGMb) and activin receptor-like kinase 6 (Alk6), as well as the Wnt inhibitor sclerostin (SOST). (ii) In 17.3% of all donors, BMP2 treatment induced viability. In these donors, the initial high SOST expression significantly dropped with BMP2 treatment. (iii) 30.9% of all donors were not directly affected by BMP2 treatment. These donors expressed high levels of the pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) and lacked SOST expression. In all donors, SOST expression correlated directly with receptor activator of NF-κB ligand (RANKL) expression, defining the cells' potential to stimulate osteoclastogenesis. Conclusions: Our data identified three donor groups profiting from BMP2 treatment either directly via stimulation of osteoblast function or viability and/or indirectly via inhibition of osteoclastogenesis, depending on their expression of BAMBI, SOST, NOG, and RANKL. On the basis of patients' respective expression profiles, the clinical application of BMP2 as well as its timing might be modified in order to better fit the patients' needs to promote bone formation or to inhibit bone resorption.


2012 ◽  
Vol 11 ◽  
pp. CIN.S9983 ◽  
Author(s):  
Xi Chen ◽  
Jiang Li ◽  
William H. Gray ◽  
Brian D. Lehmann ◽  
Joshua A. Bauer ◽  
...  

Motivation Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer group, and identification of molecular subtypes is essential for understanding the biological characteristics and clinical behaviors of TNBC as well as for developing personalized treatments. Based on 3,247 gene expression profiles from 21 breast cancer data sets, we discovered six TNBC subtypes from 587 TNBC samples with unique gene expression patterns and ontologies. Cell line models representing each of the TNBC subtypes also displayed different sensitivities to targeted therapeutic agents. Classification of TNBC into subtypes will advance further genomic research and clinical applications. Result We developed a web-based subtyping tool TNBCtype for candidate TNBC samples using our gene expression meta data and classification methods. Given a gene expression data matrix, this tool will display for each candidate sample the predicted subtype, the corresponding correlation coefficient, and the permutation P-value. We offer a user-friendly web interface to predict the subtypes for new TNBC samples that may facilitate diagnostics, biomarker selection, drug discovery, and the more tailored treatment of breast cancer.


2021 ◽  
Author(s):  
Supantha Dey ◽  
Harpreet Kaur ◽  
Elia Brodsky ◽  
Mohit Mazumder

Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of the different vaccination doses on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on 275 and 583 samples collected from the GEO datasets. At first, exploratory data analysis based Principal component analysis (PCA) shown the distinct pattern of different doses. Subsequently, differential gene expression analysis using edgeR revealed the significantly (FDR <0.005) 158 down-regulated and 61 upregulated genes between control vs. Controlled Human Malaria Infection (CHMI) samples. Further, enrichment analysis of significant genes using Annotation and GAGE tools delineate the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis and variations in their expression patterns after various doses of vaccination involved in protection.


2002 ◽  
Vol 13 (6) ◽  
pp. 1929-1939 ◽  
Author(s):  
Xin Chen ◽  
Siu Tim Cheung ◽  
Samuel So ◽  
Sheung Tat Fan ◽  
Christopher Barry ◽  
...  

Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Using cDNA microarrays to characterize patterns of gene expression in HCC, we found consistent differences between the expression patterns in HCC compared with those seen in nontumor liver tissues. The expression patterns in HCC were also readily distinguished from those associated with tumors metastatic to liver. The global gene expression patterns intrinsic to each tumor were sufficiently distinctive that multiple tumor nodules from the same patient could usually be recognized and distinguished from all the others in the large sample set on the basis of their gene expression patterns alone. The distinctive gene expression patterns are characteristic of the tumors and not the patient; the expression programs seen in clonally independent tumor nodules in the same patient were no more similar than those in tumors from different patients. Moreover, clonally related tumor masses that showed distinct expression profiles were also distinguished by genotypic differences. Some features of the gene expression patterns were associated with specific phenotypic and genotypic characteristics of the tumors, including growth rate, vascular invasion, and p53 overexpression.


Sign in / Sign up

Export Citation Format

Share Document