DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFα, LPS, and cyclic stretch

2004 ◽  
Vol 19 (3) ◽  
pp. 331-342 ◽  
Author(s):  
C.C. dos Santos ◽  
B. Han ◽  
C.F. Andrade ◽  
X. Bai ◽  
S. Uhlig ◽  
...  

Recent evidence suggests that alveolar epithelial cells (AECs) may contribute to the development, propagation, and resolution of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Proinflammatory cytokines, pathogen products, and injurious mechanical ventilation are important contributors of excessive inflammatory responses in the lung. In the present study, we used cDNA microarrays to define the gene expression patterns of A549 cells (an AEC line) in the early stages of three models of pulmonary parenchymal cell activation: cells treated with tumor necrosis factor-α (TNFα) (20 ng/ml), lipopolysaccharide (LPS, 1 μg/ml), or cyclic stretch (20% elongation) for either 1 h or 4 h. Differential gene expression profiles were determined by gene array analysis. TNFα induced an inflammatory response pattern, including induction of genes for chemokines, inflammatory mediators, and cell surface membrane proteins. TNFα also increased genes related to pro- and anti-apoptotic proteins, signal transduction proteins, and transcriptional factors. TNFα further induced a group of genes that may form a negative feedback loop to silence the NFκB pathway. Stimulation of AECs with mechanical stretch changed cell morphology and activated Src protein tyrosine kinase. The combination of TNFα plus stretch enhanced or attenuated expression of multiple genes. LPS decreased microfilament polymerization but had less impact on NFκB translocation and gene expression. Results from this study indicate that AECs can tailor their response to different stimuli or/and combination of stimuli and subsequently play an important role in acute inflammatory responses in the lung.

PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0176947 ◽  
Author(s):  
Mohammad Reza Etemadi ◽  
King-Hwa Ling ◽  
Shahidee Zainal Abidin ◽  
Hui-Yee Chee ◽  
Zamberi Sekawi

Author(s):  
Ana M Mesa ◽  
Jiude Mao ◽  
Theresa I Medrano ◽  
Nathan J Bivens ◽  
Alexander Jurkevich ◽  
...  

Abstract Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


2020 ◽  
Vol 380 (3) ◽  
pp. 513-526
Author(s):  
Yoshiki Kaihoko ◽  
Yusaku Tsugami ◽  
Norihiro Suzuki ◽  
Takahiro Suzuki ◽  
Takanori Nishimura ◽  
...  

2000 ◽  
Vol 88 (5) ◽  
pp. 1890-1896 ◽  
Author(s):  
Christine Clerici ◽  
Michael A. Matthay

Alveolar hypoxia occurs during ascent to high altitude but is also commonly observed in many acute and chronic pulmonary disorders. The alveolar epithelium is directly exposed to decreases in O2tension, but a few studies have evaluated the effects of hypoxia on alveolar cell function. The alveolar epithelium consists of two cell types: large, flat, squamous alveolar type I and cuboidal type II (ATII). ATII cells are more numerous and have a number of critical functions, including transporting ions and substrates required for many physiological processes. ATII cells express 1) membrane proteins used for supplying substrates required for cell metabolism and 2) ion transport proteins such as Na+channels and Na+-K+-ATPase, which are involved in the vectorial transport of Na+from the alveolar to interstitial spaces and therefore drive the resorption of alveolar fluid. This brief review focuses on gene expression regulation of glucose transporters and Na+transport proteins by hypoxia in alveolar epithelial cells. Cells exposed to severe hypoxia (0% or 3% O2) for 24 h upregulate the activity and expression of the glucose transporter GLUT-1, resulting in preservation of ATP content. Hypoxia-induced increases in GLUT-1 mRNA levels are due to O2deprivation and inhibition of oxidative phosphorylation. This regulation occurs at the transcriptional level through activation of a hypoxia-inducible factor. In contrast, hypoxia downregulates expression and activity of Na+channels and Na+-K+-ATPase in cultured alveolar epithelial cells. Hypoxia induces time- and concentration-dependent decreases of α-, β-, and γ-subunits of epithelial Na+channel mRNA and β1- and α1-subunits of Na+-K+-ATPase, effects that are completely reversed after reoxygenation. The mechanisms by which O2deprivation regulates gene expression of Na+transport proteins are not fully elucidated but likely involve the redox status of the cell. Thus hypoxia regulates gene expression of transport proteins in cultured alveolar epithelial type II cells differently, preserving ATP content.


2005 ◽  
Vol 288 (2) ◽  
pp. L342-L349 ◽  
Author(s):  
Hiroshi Kida ◽  
Mitsuhiro Yoshida ◽  
Shigenori Hoshino ◽  
Koji Inoue ◽  
Yukihiro Yano ◽  
...  

The goal of this study was to examine whether IL-6 could directly protect lung resident cells, especially alveolar epithelial cells, from reactive oxygen species (ROS)-induced cell death. ROS induced IL-6 gene expression in organotypic lung slices of wild-type (WT) mice. ROS also induced IL-6 gene expression in mouse primary lung fibroblasts, dose dependently. The organotypic lung slices of WT were more resistant to ROS-induced DNA fragmentation than those of IL-6-deficient (IL-6−/−) mice. WT resistance against ROS was abrogated by treatment with anti-IL-6 antibody. TdT-mediated dUTP nick end labeling stain and electron microscopy revealed that DNA fragmented cells in the IL-6−/− slice included alveolar epithelial cells and endothelial cells. In vitro studies demonstrated that IL-6 reduced ROS-induced A549 alveolar epithelial cell death. Together, these data suggest that IL-6 played an antioxidant role in the lung by protecting lung resident cells, especially alveolar epithelial cells, from ROS-induced cell death.


1999 ◽  
Vol 87 (2) ◽  
pp. 715-721 ◽  
Author(s):  
Christopher M. Waters ◽  
Karen M. Ridge ◽  
G. Sunio ◽  
K. Venetsanou ◽  
Jacob Iasha Sznajder

Alveolar epithelial cells effect edema clearance by transporting Na+ and liquid out of the air spaces. Active Na+ transport by the basolaterally located Na+-K+-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na+-K+-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na+-K+-ATPase activity, as assessed by86Rb+uptake. By 30 min and after 60 min, Na+-K+-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na+ entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na+-K+-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na+ entry into cells, demonstrated increased Na+-K+-ATPase activity. The changes in Na+-K+-ATPase activity were paralleled by increased Na+-K+-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na+-K+-ATPase activity, most likely by increasing intracellular Na+ and by recruitment of Na+-K+-ATPase subunits from intracellular pools to the basolateral membrane.


Sign in / Sign up

Export Citation Format

Share Document