Images of Action Potential Propagation in Heart

Physiology ◽  
2000 ◽  
Vol 15 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Guy Salama ◽  
Bum-Rak Choi

Activation and repolarization across mammalian hearts follow complex three-dimensional pathways that are governed by fiber structure, intercellular coupling, and action potentials (APs) with spatially heterogeneous properties. Voltage-sensitive dyes and imaging techniques offer new insights on how spatiotemporal heterogeneities of APs govern propagation, repolarization, and AV node conduction and help us visualize arrhythmias with previously unattainable details.

1998 ◽  
Vol 274 (3) ◽  
pp. H829-H845 ◽  
Author(s):  
Bum-Rak Choi ◽  
Guy Salama

The mechanisms responsible for atrioventricular (AV) delay remain unclear, in part due to the inability to map electrical activity by conventional microelectrode techniques. In this study, voltage-sensitive dyes and imaging techniques were refined to detect action potentials (APs) from the small cells comprising the AV node and to map activation from the “compact” node. Optical APs (124) were recorded from 5 × 5 mm (∼0.5-mm depth) AV zones of perfused rabbit hearts stained with a voltage-sensitive dye. Signals from the node exhibited a set of three spikes; the first and third ( peaks I and III) were coincident with atrial (A) and ventricular (V) electrograms, respectively. The second spike ( peak II) represented the firing of midnodal (N) and/or lower nodal (NH) cell APs as indicated by their small amplitude, propagation pattern, location determined from superimposition of activation maps and histological sections of the node region, dependence on depth of focus, and insensitivity to tetrodotoxin (TTX). AV delays consisted of τ1 (49.5 ± 6.59 ms, 300-ms cycle length), the interval between peaks I and II (perhaps AN to N cells), and τ2 (57.57 ± 5.15 ms), the interval between peaks II and III (N to V cells). The conductance time across the node was 10.33 ± 3.21 ms, indicating an apparent conduction velocity (ΘN) of 0.162 ± 0.02 m/s ( n = 9) that was insensitive to TTX. In contrast, τ1 correlated with changes in AV node delays (measured with surface electrodes) caused by changes in heart rate or perfusion with acetylcholine. The data provide the first maps of activation across the AV node and demonstrate that ΘN is faster than previously presumed. These findings are inconsistent with theories of decremental conduction and prove the existence of a conduction barrier between the atrium and the AV node that is an important determinant of AV node delay.


1998 ◽  
Vol 275 (5) ◽  
pp. H1905-H1909 ◽  
Author(s):  
Igor R. Efimov

The following is an abstract of the article discussed in the subsequent letter:  Choi, Bum-Rak, and Guy Salama. Optical mapping of atrioventricular node reveals a conduction barrier between atrial and nodal cells. Am. J. Physiol. 274 ( Heart Circ. Physiol. 43): H829–H845, 1998.—The mechanisms responsible for atrioventricular (AV) delay remain unclear, in part due to the inability to map electrical activity by conventional microelectrode techniques. In this study, voltage-sensitive dyes and imaging techniques were refined to detect action potentials (APs) from the small cells comprising the AV node and to map activation from the “compact” node. Optical APs (124) were recorded from 5 × 5 mm (∼0.5-mm depth) AV zones of perfused rabbit hearts stained with a voltage-sensitive dye. Signals from the node exhibited a set of three spikes; the first and third ( peaks Iand III) were coincident with atrial (A) and ventricular (V) electrograms, respectively. The second spike ( peak II)represented the firing of midnodal (N) and/or lower nodal (NH) cell APs as indicated by their small amplitude, propagation pattern, location determined from superimposition of activation maps and histological sections of the node region, dependence on depth of focus, and insensitivity to tetrodotoxin (TTX). AV delays consisted of τ1 (49.5 ± 6.59 ms, 300-ms cycle length), the interval between peaks I and II (perhaps AN to N cells), and τ2 (57.57 ± 5.15 ms), the interval between peaks II and III (N to V cells). The conductance time across the node was 10.33 ± 3.21 ms, indicating an apparent conduction velocity (ΘN) of 0.162 ± 0.02 m/s ( n = 9) that was insensitive to TTX. In contrast, τ1 correlated with changes in AV node delays (measured with surface electrodes) caused by changes in heart rate or perfusion with acetylcholine. The data provide the first maps of activation across the AV node and demonstrate that ΘN is faster than previously presumed. These findings are inconsistent with theories of decremental conduction and prove the existence of a conduction barrier between the atrium and the AV node that is an important determinant of AV node delay.


Author(s):  
Samuel R Kuo ◽  
Natalia A Trayanova

Atrial fibrillation (AF) is believed to be perpetuated by recirculating spiral waves. Atrial structures are often characterized with action potentials of varying morphologies; however, the role of the structure-dependent atrial electrophysiological heterogeneity in spiral wave behaviour is not well understood. The purpose of this study is to determine the effect of action potential morphology heterogeneity associated with the major atrial structures in spiral wave maintenance. The present study also focuses on how this effect is further modulated by the presence of the inherent periodicity in atrial structure. The goals of the study are achieved through the simulation of electrical behaviour in a two-dimensional atrial tissue model that incorporates the representation of action potentials in various structurally distinct regions in the right atrium. Periodic boundary conditions are then imposed to form a cylinder (quasi three-dimensional), thus allowing exploration of the additional effect of structure periodicity on spiral wave behaviour. Transmembrane potential maps and phase singularity traces are analysed to determine effects on spiral wave behaviour. Results demonstrate that the prolonged refractoriness of the crista terminalis (CT) affects the pattern of spiral wave reentry, while the variation in action potential morphology of the other structures does not. The CT anchors the spiral waves, preventing them from drifting away. Spiral wave dynamics is altered when the ends of the sheet are spliced together to form a cylinder. The main effect of the continuous surface is the generation of secondary spiral waves which influences the primary rotors. The interaction of the primary and secondary spiral waves decreased as cylinder diameter increased.


2021 ◽  
Author(s):  
Alessio Paolo Buccino ◽  
Xinyue Yuan ◽  
Vishalini Emmenegger ◽  
Xiaohan Xue ◽  
Tobias Gaenswein ◽  
...  

Neurons communicate with each other by sending action potentials through their axons. The velocity of axonal signal propagation describes how fast electrical action potentials can travel, and can be affected in a human brain by several pathologies, including multiple sclerosis, traumatic brain injury and channelopathies. High-density microelectrode arrays (HD-MEAs) provide unprecedented spatio-temporal resolution to extracellularly record neural electrical activity. The high density of the recording electrodes enables to image the activity of individual neurons down to subcellular resolution, which includes the propagation of axonal signals. However, axon reconstruction, to date, mainly relies on a manual approach to select the electrodes and channels that seemingly record the signals along a specific axon, while an automated approach to track multiple axonal branches in extracellular action-potential recordings is still missing. In this article, we propose a fully automated approach to reconstruct axons from extracellular electrical-potential landscapes, so-called "electrical footprints" of neurons. After an initial electrode and channel selection, the proposed method first constructs a graph, based on the voltage signal amplitudes and latencies. Then, the graph is interrogated to extract possible axonal branches. Finally, the axonal branches are pruned and axonal action-potential propagation velocities are computed. We first validate our method using simulated data from detailed reconstructions of neurons, showing that our approach is capable of accurately reconstructing axonal branches. We then apply the reconstruction algorithm to experimental recordings of HD-MEAs and show that it can be used to determine axonal morphologies and signal-propagation velocities at high throughput. We introduce a fully automated method to reconstruct axonal branches and estimate axonal action-potential propagation velocities using HD-MEA recordings. Our method yields highly reliable and reproducible velocity estimations, which constitute an important electrophysiological feature of neuronal preparations.


2019 ◽  
Author(s):  
Helmut Schmidt ◽  
Thomas R. Knösche

AbstractWith the advent of advanced MRI techniques it has become possible to study axonal white matter non-invasively and in great detail. Measuring the various parameters of the long-range connections of the brain opens up the possibility to build and refine detailed models of large-scale neuronal activity. One particular challenge is to find a mathematical description of action potential propagation that is sufficiently simple, yet still biologically plausible to model signal transmission across entire axonal fibre bundles. We develop a mathematical framework in which we replace the Hodgkin-Huxley dynamics by a spike-diffuse-spike model with passive sub-threshold dynamics and explicit, threshold-activated ion channel currents. This allows us to study in detail the influence of the various model parameters on the action potential velocity and on the entrainment of action potentials between ephaptically coupled fibres without having to recur to numerical simulations. Specifically, we recover known results regarding the influence of axon diameter, node of Ranvier length and internode length on the velocity of action potentials. Additionally, we find that the velocity depends more strongly on the thickness of the myelin sheath than was suggested by previous theoretical studies. We further explain the slowing down and synchronisation of action potentials in ephaptically coupled fibres by their dynamic interaction. In summary, this study presents a solution to incorporate detailed axonal parameters into a whole-brain modelling framework.Author summaryWith more and more data becoming available on white-matter tracts, the need arises to develop modelling frameworks that incorporate these data at the whole-brain level. This requires the development of efficient mathematical schemes to study parameter dependencies that can then be matched with data, in particular the speed of action potentials that cause delays between brain regions. Here, we develop a method that describes the formation of action potentials by threshold activated currents, often referred to as spike-diffuse-spike modelling. A particular focus of our study is the dependence of the speed of action potentials on structural parameters. We find that the diameter of axons and the thickness of the myelin sheath have a strong influence on the speed, whereas the length of myelinated segments and node of Ranvier length have a lesser effect. In addition to examining single axons, we demonstrate that action potentials between nearby axons can synchronise and slow down their propagation speed.


2017 ◽  
Author(s):  
Kenneth R. Tovar ◽  
Daniel C. Bridges ◽  
Bian Wu ◽  
Connor Randall ◽  
Morgane Audouard ◽  
...  

AbstractThe small caliber of central nervous system (CNS) axons makes routine study of axonal physiology relatively difficult. However, while recording extracellular action potentials from neurons cultured on planer multi-electrode arrays (MEAs) we found activity among groups of electrodes consistent with action potential propagation in single neurons. Action potential propagation was evident as widespread, repetitive cooccurrence of extracellular action potentials (eAPs) among groups of electrodes. These eAPs occurred with invariant sequences and inter-electrode latencies that were consistent with reported measures of action potential propagation in unmyelinated axons. Within co-active electrode groups, the inter-electrode eAP latencies were temperature sensitive, as expected for action potential propagation. Our data are consistent with these signals primarily reflecting axonal action potential propagation, from axons with a high density of voltage-gated sodium channels. Repeated codetection of eAPs by multiple electrodes confirmed these eAPs are from individual neurons and averaging these eAPs revealed sub-threshold events at other electrodes. The sequence of electrodes at which eAPs co-occur uniquely identifies these neurons, allowing us to monitor spiking of single identified neurons within neuronal ensembles. We recorded dynamic changes in single axon physiology such as simultaneous increases and decreases in excitability in different portions of single axonal arbors over several hours. Over several weeks, we measured changes in inter-electrode propagation latencies and ongoing changes in excitability in different regions of single axonal arbors. We recorded action potential propagation signals in human induced pluripotent stem cell-derived neurons which could thus be used to study axonal physiology in human disease models.Significance StatementStudying the physiology of central nervous system axons is limited by the technical challenges of recording from axons with pairs of patch or extracellular electrodes at two places along single axons. We studied action potential propagation in single axonal arbors with extracellular recording with multi-electrode arrays. These recordings were non-invasive and were done from several sites of small caliber axons and branches. Unlike conventional extracellular recording, we unambiguously identified and labelled the neuronal source of propagating action potentials. We manipulated and quantified action potential propagation and found a surprisingly high density of axonal voltage-gated sodium channels. Our experiments also demonstrate that the excitability of different portions of axonal arbors can be independently regulated on time scales from hours to weeks.


2010 ◽  
Vol 24 (17) ◽  
pp. 1847-1853 ◽  
Author(s):  
ZHI ZHU HE ◽  
JING LIU

A three-dimensional (3D) electrical action potential propagation model is developed to characterize the integrated effect of cardiac tissue structure using a homogenous function with a spatial inhomogeneity. This method may be more effective for bridging the gap between computational models and experimental data for cardiac tissue anisotropy. A generalized 3D eikonal relation considering anisotropy and a self-similar evolution solution of such a relation are derived to identify the effect of anisotropy and predict the anisotropy-induced electrical wave propagation instabilities. Furthermore, the phase field equation is introduced to obtain the complex three-dimensional numerical solution of the new correlation. The present results are expected to be valuable for better understanding the physiological behavior of cardiac tissues.


2021 ◽  
Vol 7 (15) ◽  
pp. eabd5175
Author(s):  
Michele Dipalo ◽  
Sahil K. Rastogi ◽  
Laura Matino ◽  
Raghav Garg ◽  
Jacqueline Bliley ◽  
...  

Graphene with its unique electrical properties is a promising candidate for carbon-based biosensors such as microelectrodes and field effect transistors. Recently, graphene biosensors were successfully used for extracellular recording of action potentials in electrogenic cells; however, intracellular recordings remain beyond their current capabilities because of the lack of an efficient cell poration method. Here, we present a microelectrode platform consisting of out-of-plane grown three-dimensional fuzzy graphene (3DFG) that enables recording of intracellular cardiac action potentials with high signal-to-noise ratio. We exploit the generation of hot carriers by ultrafast pulsed laser for porating the cell membrane and creating an intimate contact between the 3DFG electrodes and the intracellular domain. This approach enables us to detect the effects of drugs on the action potential shape of human-derived cardiomyocytes. The 3DFG electrodes combined with laser poration may be used for all-carbon intracellular microelectrode arrays to allow monitoring of the cellular electrophysiological state.


1978 ◽  
Vol 41 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M. Westerfield ◽  
R. W. Joyner ◽  
J. W. Moore

1. The propagation of action potentials through the branching regions of squid axons was examined experimentally and with computer simulations over a temperature range of 5-25 degrees C. 2. Above a critical ratio of postbranch to prebranch diameters, propagation of an action potential failed. The value of this critical ratio is very sensitive to temperature and is smaller at high temperatures. The experimentally measured Q10 of the critical ratio is 0.37 +/- 0.04. 3. Evaluation of a number of parameters of action-potential propagation showed that this effect is closely related to the change in the width of the action potential with temperature (Q10 = 0.29 +/- 0.01).


Sign in / Sign up

Export Citation Format

Share Document