Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias

2004 ◽  
Vol 84 (2) ◽  
pp. 431-488 ◽  
Author(s):  
ANDRÉ G. KLÉBER ◽  
YORAM RUDY

Kléber, André G., and Yoram Rudy. Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias. Physiol Rev 84: 431–488, 2004; 10.1152/physrev.00025.2003.—Propagation of excitation in the heart involves action potential (AP) generation by cardiac cells and its propagation in the multicellular tissue. AP conduction is the outcome of complex interactions between cellular electrical activity, electrical cell-to-cell communication, and the cardiac tissue structure. As shown in this review, strong interactions occur among these determinants of electrical impulse propagation. A special form of conduction that underlies many cardiac arrhythmias involves circulating excitation. In this situation, the curvature of the propagating excitation wavefront and the interaction of the wavefront with the repolarization tail of the preceding wave are additional important determinants of impulse propagation. This review attempts to synthesize results from computer simulations and experimental preparations to define mechanisms and biophysical principles that govern normal and abnormal conduction in the heart.

2018 ◽  
Author(s):  
Nina Kudryashova ◽  
Aygul Nizamieva ◽  
Valeriya Tsvelaya ◽  
Alexander Panfilov ◽  
Konstantin Agladze

AbstractCardiac fibrosis occurs in many forms of heart disease and is considered to be one of the main arrhythmogenic factors. Regions with a high density of fibrosis are likely to cause blocks of wave propagation that give rise to dangerous cardiac arrhythmias. Therefore, studies of the wave propagation through these regions are very important, yet the precise mechanisms leading to arrhythmia formation in fibrotic cardiac tissue remain poorly understood. Particularly, it is not clear how wave propagation is organized at the cellular level, as experiments show that the regions with a high percentage of fibrosis (65-75%) are still conducting electrical signals, whereas geometric analysis of randomly distributed cells predicts connectivity loss at 40% at the most (percolation threshold). To address this question, we used a joint in vitro-in silico approach, which combined experiments in neonatal rat cardiac monolayers with morphological and electrophysiological computer simulations. We have shown that the main reason for sustainable wave propagation in highly fibrotic samples is the formation of a branching network of cardiomyocytes. We have successfully reproduced the morphology of conductive pathways in computer modelling, assuming that cardiomyocytes align their cytoskeletons to fuse into cardiac syncytium. The electrophysiological properties of the monolayers, such as conduction velocity, conduction blocks and wave fractionation, were reproduced as well. In a virtual cardiac tissue, we have also examined the wave propagation at the subcellular level, detected wavebreaks formation and its relation to the structure of fibrosis and, thus, analysed the processes leading to the onset of arrhythmias.Author summaryCardiac arrhythmias are one of the major causes of death in the industrialized world. The most dangerous ones are often caused by the blocks of propagation of electrical signals. One of the common factors that contribute to the likelihood of these blocks, is a condition called cardiac fibrosis. In fibrosis, excitable cardiac tissue is partially replaced with the inexcitable connective tissue. The precise mechanisms leading to arrhythmia formation in fibrotic cardiac tissue remain poorly understood. Therefore, it is important to study wave propagation in fibrosis from cellular to tissue level. In this paper, we study fibrosis of high density in experiments and computer simulations. We have observed a paradoxical ability of the tissue with extremely high fibrosis (up to 75% of fibroblasts) to conduct electrical signals and contract synchronously, whereas geometric analysis of randomly distributed cells predicted connectivity loss at 40% at the most. To explain this phenomenon, we have studied the patterns that cardiac cells form in the tissue and reproduced their self-organisation in a computer model. Our virtual model also took into account the polygonal shapes of the spreading cells and explained high arrhythmogenicity of fibrotic tissue.


1996 ◽  
Vol 06 (09) ◽  
pp. 1767-1773 ◽  
Author(s):  
ERNST HOFER ◽  
GÜNTHER MOHR ◽  
ANA CLAUDIA JORGE ◽  
DIETER PLATZER ◽  
INGRID SCHAFFERHOFER

In recent years there has been a remarkable progress in the knowledge of the microstructure of the cardiac tissue and its influence on the conduction of the cardiac impulse. The tissue domain can be thought as a discrete network of cells coupled electrically at stochastically distributed sites. During in-vitro experiments the tissue is surrounded by a conducting superfusate which represents a continuous domain. With electrode arrays, electrograms can be recorded simultaneously at many sites in this volume conductor and the spatio-temporal distribution of potentials can be obtained. In this paper we show, that despite the fact that the sensors were placed in a continuous medium, we were able to detect microscopic discontinuities of propagation with appropriate techniques.


Author(s):  
W.G. Wier

A fundamentally new understanding of cardiac excitation-contraction (E-C) coupling is being developed from recent experimental work using confocal microscopy of single isolated heart cells. In particular, the transient change in intracellular free calcium ion concentration ([Ca2+]i transient) that activates muscle contraction is now viewed as resulting from the spatial and temporal summation of small (∼ 8 μm3), subcellular, stereotyped ‘local [Ca2+]i-transients' or, as they have been called, ‘calcium sparks'. This new understanding may be called ‘local control of E-C coupling'. The relevance to normal heart cell function of ‘local control, theory and the recent confocal data on spontaneous Ca2+ ‘sparks', and on electrically evoked local [Ca2+]i-transients has been unknown however, because the previous studies were all conducted on slack, internally perfused, single, enzymatically dissociated cardiac cells, at room temperature, usually with Cs+ replacing K+, and often in the presence of Ca2-channel blockers. The present work was undertaken to establish whether or not the concepts derived from these studies are in fact relevant to normal cardiac tissue under physiological conditions, by attempting to record local [Ca2+]i-transients, sparks (and Ca2+ waves) in intact, multi-cellular cardiac tissue.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 563
Author(s):  
Magali Seguret ◽  
Eva Vermersch ◽  
Charlène Jouve ◽  
Jean-Sébastien Hulot

Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


Circulation ◽  
2000 ◽  
Vol 102 (suppl_3) ◽  
Author(s):  
Jonathan Leor ◽  
Sharon Aboulafia-Etzion ◽  
Ayelet Dar ◽  
Lilia Shapiro ◽  
Israel M. Barbash ◽  
...  

Background —The myocardium is unable to regenerate because cardiomyocytes cannot replicate after injury. The heart is therefore an attractive target for tissue engineering to replace infarcted myocardium and enhance cardiac function. We tested the feasibility of bioengineering cardiac tissue within novel 3-dimensional (3D) scaffolds. Methods and Results —We isolated and grew fetal cardiac cells within 3D porous alginate scaffolds. The cell constructs were cultured for 4 days to evaluate viability and morphology before implantation. Light microscopy revealed that within 2 to 3 days in culture, the dissociated cardiac cells form distinctive, multicellular contracting aggregates within the scaffold pores. Seven days after myocardial infarction, rats were randomized to biograft implantation (n=6) or sham-operation (n=6) into the myocardial scar. Echocardiography study was performed before and 65±5 days after implantation to assess left ventricular (LV) remodeling and function. Hearts were harvested 9 weeks after implantation. Visual examination of the biograft revealed intensive neovascularization from the neighboring coronary network. Histological examination revealed the presence of myofibers embedded in collagen fibers and a large number of blood vessels. The specimens showed almost complete disappearance of the scaffold and good integration into the host. Although control animals developed significant LV dilatation accompanied by progressive deterioration in LV contractility, in the biograft-treated rats, attenuation of LV dilatation and no change in LV contractility were observed. Conclusions —Alginate scaffolds provide a conducive environment to facilitate the 3D culturing of cardiac cells. After implantation into the infarcted myocardium, the biografts stimulated intense neovascularization and attenuated LV dilatation and failure in experimental rats compared with controls. This strategy can be used for regeneration and healing of the infarcted myocardium.


Sign in / Sign up

Export Citation Format

Share Document