IS THE DISCRETE COUPLING OF CARDIAC CELLS REFLECTED IN THE WAVEFRONT OF EXTRACELLULAR POTENTIALS? — AN EXPERIMENTAL APPROACH

1996 ◽  
Vol 06 (09) ◽  
pp. 1767-1773 ◽  
Author(s):  
ERNST HOFER ◽  
GÜNTHER MOHR ◽  
ANA CLAUDIA JORGE ◽  
DIETER PLATZER ◽  
INGRID SCHAFFERHOFER

In recent years there has been a remarkable progress in the knowledge of the microstructure of the cardiac tissue and its influence on the conduction of the cardiac impulse. The tissue domain can be thought as a discrete network of cells coupled electrically at stochastically distributed sites. During in-vitro experiments the tissue is surrounded by a conducting superfusate which represents a continuous domain. With electrode arrays, electrograms can be recorded simultaneously at many sites in this volume conductor and the spatio-temporal distribution of potentials can be obtained. In this paper we show, that despite the fact that the sensors were placed in a continuous medium, we were able to detect microscopic discontinuities of propagation with appropriate techniques.

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


2019 ◽  
Author(s):  
Marcel Schubert ◽  
Lewis Woolfson ◽  
Isla RM Barnard ◽  
Andrew Morton ◽  
Becky Casement ◽  
...  

AbstractCardiac regeneration and stem cell therapies depend critically on the ability to locally resolve the contractile properties of heart tissue1,2. Current regeneration approaches explore the growth of cardiac tissue in vitro and the injection of stem cell-derived cardiomyocytes3–6 (CMs) but scientists struggle with low engraftment rates and marginal mechanical improvements, leaving the estimated 26 million patients suffering from heart failure worldwide without effective therapy7–9. One impediment to further progress is the limited ability to functionally monitor injected cells as currently available techniques and probes lack speed and sensitivity as well as single cell specificity. Here, we introduce microscopic whispering gallery mode (WGM) lasers into beating cardiomyocytes to realize all-optical recording of transient cardiac contraction profiles with cellular resolution. The brilliant emission and high spectral sensitivity of microlasers to local changes in refractive index enable long-term tracking of individual cardiac cells, monitoring of drug administration, and accurate measurements of organ scale contractility in live zebrafish. Our study reveals changes in sarcomeric protein density as underlying factor to cardiac contraction which is of fundamental importance for understanding the mechano-biology of cardiac muscle activation. The ability to non-invasively assess functional properties of transplanted cells and engineered cardiac tissue will stimulate the development of novel translational approaches and the in vivo monitoring of physiological parameters more broadly. Likewise, the use of implanted microlasers as cardiac sensors is poised to inspire the adaptation of the most advanced optical tools known to the microresonator community, like quantum-enhanced single-molecule biosensing or frequency comb spectroscopy10.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Corin Williams ◽  
Michael Levin ◽  
Lauren D Black

Cardiac tissue engineering is a promising approach for treating children with congenital heart defects. However, as cardiomyocytes (CMs) undergo a rapid transition from hyperplastic to hypertrophic growth after birth, a major challenge to the development of engineered cardiac tissue is the limited proliferation of CMs. Mature CMs and other terminally differentiated cell types tend to have a highly negative resting membrane potential (Vmem) while stem cells and less mature cells tend to have Vmem closer to zero. Vmem has been shown to play an important role in cell differentiation and proliferation. We hypothesized that depolarization of cardiac cells would stimulate CM proliferation in vitro . To test our hypothesis, we isolated neonatal rat cardiac cells and cultured them for 24 hr under standard conditions. Cells were then subjected to depolarization treatment for 72 hr using potassium gluconate or ouabain at various concentrations. Samples were fixed and stained for cardiac α-actin (Fig 1A, red) and phospho-histone H3 (Fig 1A, green) to assess CM mitosis. We found that potassium gluconate had no significant effect while ouabain significantly increased CM mitosis, suggesting Vmem regulation via Na/K-ATPase. CM-specific proliferation was significantly higher with 10nM (p= 0.015) and 100nM (p=0.008) ouabain treatment compared to controls (n=3) (Fig 1B). Cell density was significantly higher with 100μM ouabain versus controls (2656 ± 50 vs. 2026 ± 117 cells/mm 2 ), indicating increased cardiac cell proliferation (Fig 1C). Our findings suggest that depolarization promotes CM proliferation and may be a novel approach to encourage growth of engineered cardiac tissue in vitro .


2004 ◽  
Vol 84 (2) ◽  
pp. 431-488 ◽  
Author(s):  
ANDRÉ G. KLÉBER ◽  
YORAM RUDY

Kléber, André G., and Yoram Rudy. Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias. Physiol Rev 84: 431–488, 2004; 10.1152/physrev.00025.2003.—Propagation of excitation in the heart involves action potential (AP) generation by cardiac cells and its propagation in the multicellular tissue. AP conduction is the outcome of complex interactions between cellular electrical activity, electrical cell-to-cell communication, and the cardiac tissue structure. As shown in this review, strong interactions occur among these determinants of electrical impulse propagation. A special form of conduction that underlies many cardiac arrhythmias involves circulating excitation. In this situation, the curvature of the propagating excitation wavefront and the interaction of the wavefront with the repolarization tail of the preceding wave are additional important determinants of impulse propagation. This review attempts to synthesize results from computer simulations and experimental preparations to define mechanisms and biophysical principles that govern normal and abnormal conduction in the heart.


1982 ◽  
Vol 60 (12) ◽  
pp. 1636-1642 ◽  
Author(s):  
Joseph J. Lynch ◽  
Ralf G. Rahwan ◽  
Richard J. Brumbaugh ◽  
Donald T. Witiak

The 2-n-propyl- and 2-n-butyl-3-dimethylamino-5, 6-methylenedioxyindene hydrochlorides are intracellular calcium antagonists with coronary dilating and antiarrhythmic effects against ouabain- and calcium-induced arrhythmias. In the present study, pretreatment with these tertiary methylenedioxyindenes afforded significant protection against the calcium-dependent arrhythmias induced by chloroform in mice. On the other hand, their antiarrhythmic activity against aconitine- and metha-choline-induced arrhythmias in rats (in which calcium does not play a primary etiological role) was suggestive but not impressive. The quaternary derivative, 2-n-butyl-5, 6-methylenedioxy-3-trimethylammonium iodide, which was synthesized with the expectation of being devoid of antiarrhythmic activity owing to its exclusion from the intracellular compartment, unexpectedly demonstrated greater antiarrhythmic potency than the tertiary analogues against calcium-induced arrhythmias in rats and chloroform-induced arrhythmias in mice. Like the tertiary methylenedioxyindenes, the protective activity of the quaternary analogue against arrhythmias induced by aconitine or by methacholine in rats was suggestive but not impressive. Because of the relative inactivity of the quaternary methylenedioxyindene in vitro, it is proposed that its in vivo activity may be due either to metabolic activation or to concentration in cardiac tissue in sufficient quantity to allow diffusion into cardiac cells down a concentration gradient or to alter membrane electrophysiological properties to the extent of exerting antiarrhythmic activity.


2020 ◽  
Vol 21 (21) ◽  
pp. 7950
Author(s):  
Leyre López-Muneta ◽  
Josu Miranda-Arrubla ◽  
Xonia Carvajal-Vergara

Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 925
Author(s):  
Yongjun Jang ◽  
Yongdoo Park ◽  
Jongseong Kim

The extracellular matrix (ECM) is needed to maintain the structural integrity of tissues and to mediate cellular dynamics. Its main components are fibrous proteins and glycosaminoglycans, which provide a suitable environment for biological functions. Thus, biomaterials with ECM-like properties have been extensively developed by modulating their key components and properties. In the field of cardiac tissue engineering, the use of biomaterials offers several advantages in that biophysical and biochemical cues can be designed to mediate cardiac cells, which is critical for maturation and regeneration. This suggests that understanding biomaterials and their use in vivo and in vitro is beneficial in terms of advancing cardiac engineering. The current review provides an overview of both natural and synthetic biomaterials and their use in cardiac engineering. In addition, we focus on different strategies to recapitulate the cardiac tissue in 2D and 3D approaches, which is an important step for the maturation of cardiac tissues toward regeneration of the adult heart.


Author(s):  
Zhe Li ◽  
Tuan T. Nguyen ◽  
Alan Valaperti

AbstractHeart inflammation is one of the major causes of heart damage that leads to dilated cardiomyopathy and often progresses to end-stage heart failure. In the present study, we aimed to assess whether human cardiac cells could release immune mediators upon stimulation of Toll-like receptors (TLRs) and Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs).Commercially available human cardiac fibroblasts and an immortalized human cardiomyocyte cell line were stimulated in vitro with TLR2, TLR3, and TLR4 agonists. In addition, cytosolic RLRs were activated in cardiac cells after transfection of polyinosinic-polycytidylic acid (PolyIC). Upon stimulation of TLR3, TLR4, MDA5, and RIG-I, but not upon stimulation of TLR2, human cardiac fibroblasts produced high amounts of the pro-inflammatory cytokines IL-6 and IL-8. On the contrary, the immortalized human cardiomyocyte cell line was unresponsive to the tested TLRs agonists. Upon RLRs stimulation, cardiac fibroblasts, and to a lesser extent the cardiomyocyte cell line, induced anti-viral IFN-β expression.These data demonstrate that human cardiac fibroblasts and an immortalized human cardiomyocyte cell line differently respond to various TLRs and RLRs ligands. In particular, human cardiac fibroblasts were able to induce pro-inflammatory and anti-viral cytokines on their own. These aspects will contribute to better understand the immunological function of the different cell populations that make up the cardiac tissue.


Author(s):  
W.G. Wier

A fundamentally new understanding of cardiac excitation-contraction (E-C) coupling is being developed from recent experimental work using confocal microscopy of single isolated heart cells. In particular, the transient change in intracellular free calcium ion concentration ([Ca2+]i transient) that activates muscle contraction is now viewed as resulting from the spatial and temporal summation of small (∼ 8 μm3), subcellular, stereotyped ‘local [Ca2+]i-transients' or, as they have been called, ‘calcium sparks'. This new understanding may be called ‘local control of E-C coupling'. The relevance to normal heart cell function of ‘local control, theory and the recent confocal data on spontaneous Ca2+ ‘sparks', and on electrically evoked local [Ca2+]i-transients has been unknown however, because the previous studies were all conducted on slack, internally perfused, single, enzymatically dissociated cardiac cells, at room temperature, usually with Cs+ replacing K+, and often in the presence of Ca2-channel blockers. The present work was undertaken to establish whether or not the concepts derived from these studies are in fact relevant to normal cardiac tissue under physiological conditions, by attempting to record local [Ca2+]i-transients, sparks (and Ca2+ waves) in intact, multi-cellular cardiac tissue.


Sign in / Sign up

Export Citation Format

Share Document