Molecular physiology of cardiac potassium channels

1996 ◽  
Vol 76 (1) ◽  
pp. 49-67 ◽  
Author(s):  
K. K. Deal ◽  
S. K. England ◽  
M. M. Tamkun

The cardiac action potential results from the complex, but precisely regulated, movement of ions across the sarcolemmal membrane. Potassium channels represent the most diverse class of ion channels in heart and are the targets of several antiarrhythmic drugs. Potassium currents in the myocardium can be classified into one of two general categories: 1) inward rectifying currents such as IK1, IKACh, and IKATP; and 2) primarily voltage-gated currents such as IKs, IKr, IKp, IKur, and Ito. The inward rectifier currents regulate the resting membrane potential, whereas the voltage-activated currents control action potential duration. The presence of these multiple, often overlapping, outward currents in native cardiac myocytes has complicated the study of individual K+ channels; however, the application of molecular cloning technology to these cardiovascular K+ channels has identified the primary structure of these proteins, and heterologous expression systems have allowed a detailed analysis of the function and pharmacology of a single channel type. This review addresses the progress made toward understanding the complex molecular physiology of K+ channels in mammalian myocardium. An important challenge for the future is to determine the relative contribution of each of these cloned channels to cardiac function.

1992 ◽  
Vol 263 (4) ◽  
pp. E752-E759 ◽  
Author(s):  
P. M. Vassilev ◽  
M. V. Kanazirska ◽  
S. J. Quinn ◽  
D. L. Tillotson ◽  
G. H. Williams

Four distinct types of K+ channels were identified in rat and bovine adrenal zona glomerulosa (ZG) cells and characterized using single-channel recording techniques. Inward rectifier channels were the most frequently observed K+ channel types in the membrane patches of both rat and bovine ZG cells. The slope conductance of the inward current was 42 pS with an extracellular K+ concentration of 150 mM. The probability of the open state of these channels increased with depolarization. With the use of inside-out membrane patches with symmetric 150 mM K+ solutions, the rectifying behavior was found to require Mg2+ on the intracellular side of the membrane. Delayed rectifier K+ channels with conductances of 27 and 48 pS were found with rat ZG cells. These channels persisted with prolonged positive voltage steps and showed long mean open times with increasing depolarization. Transient outward currents with a conductance of 28 pS were observed only in bovine ZG cells. These channels showed substantial inactivation during positive voltage steps of 250 ms duration. Ca(2+)-activated K+ channels with a large conductance (228 pS) were identified in rat and bovine ZG cells. These different classes of K+ channels may be important for the control of resting membrane potential and the generation of action potentials, thus participating in the regulation of Ca2+ influx and aldosterone secretion in ZG cells.


1997 ◽  
Vol 273 (1) ◽  
pp. C110-C117 ◽  
Author(s):  
T. J. Heppner ◽  
A. D. Bonev ◽  
M. T. Nelson

The goal of this study was to examine the role of large conductance Ca(2+)-activated K+ channels in the regulation of cell excitability in urinary bladder smooth muscle from the guinea pig. Ca(2+)-activated K+ channels were studied with single-channel recording techniques and found to be intracellular Ca2+ and voltage dependent and sensitive to external tetraethylammonium and blocked by nanomolar concentrations of iberiotoxin (apparent dissociation constant of 4 nM). Spontaneous action potentials recorded from intact tissue strips depended on external Ca2+ and were inhibited by Ca2+ channel blockers. Iberiotoxin (100 nM) significantly altered the configuration of the action potential by increasing the duration and peak amplitude of the action potential and decreasing the rate of decay. Iberiotoxin also increased the action potential frequency from 0.11 to 0.29 Hz. This study suggests that Ca(2+)-activated K+ channels play a significant role in the repolarization of the action potential and in the maintenance of the resting membrane potential of the urinary bladder smooth muscle.


1997 ◽  
Vol 86 (2) ◽  
pp. 394-404 ◽  
Author(s):  
Michael E. Brau ◽  
Frank Sander ◽  
Werner Vogel ◽  
Gunter Hempelmann

Background Ketamine shows, besides its general anesthetic effect, a local anesthetic-like action that is due to blocking of peripheral nerve sodium currents. In this study, the stereoselectivity of the blocking effects of the ketamine enantiomers S(+) and R(-) was investigated in sodium and potassium channels in peripheral nerve membranes. Methods Ion channel blockade of ketamine was investigated in enzymatically dissociated Xenopus sciatic nerves in multiple-channel and in single-channel outside-out patches. Results Concentration-effect curves for the Na+ peak current revealed half-maximal inhibiting concentrations (IC50) of 347 microM and 291 microM for S(+) and R(-) ketamine, respectively. The potential-dependent K+ current was less sensitive than the Na+ current with IC50 values of 982 microM and 942 microM. The most sensitive ion channel was the flickering background K+ channel, with IC50 values of 168 microM and 146 microM for S(+) and R(-) ketamine. Competition experiments suggest one binding site at the flicker K+ channel, with specific binding affinities for each of the enantiomers. For the Na+ channel, the block was weaker in acidic (pH = 6.6) than in neutral (pH = 7.4) and basic (pH = 8.2) solutions; for the flicker K+ channel, the block was weaker in acidic and stronger in basic solutions. Conclusions Ketamine blockade of sodium and potassium channels in peripheral nerve membranes shows no stereoselectivity except for the flicker K+ channel, which showed a very weak stereoselectivity in favor of the R(-) form. This potential-insensitive flicker K+ channel may contribute to the resting potential. Block of this channel and subsequent depolarization of the resting membrane potential leads, besides to direct Na+ channel block, to inexcitability via Na+ channel inactivation.


1991 ◽  
Vol 260 (5) ◽  
pp. E772-E779 ◽  
Author(s):  
U. Brauneis ◽  
P. M. Vassilev ◽  
S. J. Quinn ◽  
G. H. Williams ◽  
D. L. Tillotson

Angiotensin II (ANG II) is a principal secretagogue of adrenal zona glomerulosa (ZG) cells. The transduction process includes a depolarization of the plasma membrane and the activation of calcium influx. The ANG II-induced depolarization is associated with an increase in total membrane resistance. To directly address the mechanism underlying these observations, we examined the effect of ANG II on K+ currents of rat, bovine, and human ZG cells, using whole cell patch clamp. Although some differences were seen in the characteristics of K+ currents between species, ANG II consistently blocked outward currents in ZG cells [rat: 47.1 +/- 4.5% (SE), n = 17; bovine: 38.6 +/- 3.3%, n = 21; and human: 13-63%, n = 3]. With the use of the cell-attached mode, single-channel recordings in bovine ZG cells demonstrated K+ channels that were reversibly blocked when ANG II was added to the bath solution. This indicates that the block of K+ channels by ANG II involves a diffusible intracellular messenger rather than a direct receptor-channel interaction. The decreased conductance of K+ can account for the ANG II-induced membrane depolarization.


1992 ◽  
Vol 263 (1) ◽  
pp. F116-F126 ◽  
Author(s):  
B. N. Ling ◽  
C. L. Webster ◽  
D. C. Eaton

Patch clamp technology was utilized to study the effects of apical phospholipase A2 (PLA2) metabolites on “maxi K” channels in the principal cell apical membrane of rabbit cortical collecting tubule (CCT) primary cultures (B. N. Ling, C. F. Hinton, and D. C. Eaton. Kidney Int. 40: 441–452, 1991). At resting membrane potential, this channel is quiescent in the cell-attached configuration. Apical application of the PLA2 agonist melittin (1 microgram/ml) for 10 min increased single-channel open probability (Po) from 0.0004 +/- 0.0010 to 0.11 +/- 0.05. Similarly, apical exposure to 50 microM arachidonic acid (AA) or 0.5 microM prostaglandin (PG) E2, but not 0.5 microM PGF2 alpha, also increased channel activity. Conversely, 10 microM of the PLA2 antagonist quinacrine applied apically decreased Po. Removal of apical bath Ca2+ did not prevent melittin-, AA-, or PGE2-induced channel activation. We then examined the role of maxi K channels and eicosanoids in principal cell volume regulation. Within seconds of reducing basolateral bath tonicity (285 to 214 mosmol/kgH2O), NPo (i.e., no. of channels x Po) initially increased approximately 200%, followed by a delayed but prolonged activation phase that was attenuated by removal of apical bath Ca2+. Pretreatment with 10 microM quinacrine, 100 microM indomethacin (cyclooxygenase inhibitor), or 0.25 microM thapsigargin (to deplete intracellular Ca2+ stores) abolished the initial phase of swelling-induced channel activation.(ABSTRACT TRUNCATED AT 250 WORDS)


Physiology ◽  
1986 ◽  
Vol 1 (3) ◽  
pp. 92-95
Author(s):  
OH Peterson

Fluid secretion from exocrine glands can be switched on and off with great precision. Recent patch-clamp recordings of single-channel currents in acinar cells reveals that neurotransmitters and hormones control the opening of K+ channels. However, fluid secretion is due to transport of Na+ and Cl-, and movement of these ions occurs only when K+ can be transported simultaneously. Thus, by controlling K+ channels, neurotransmitters or hormones regulate Na+ and Cl-secretion.


1999 ◽  
Vol 77 (6) ◽  
pp. 447-453 ◽  
Author(s):  
Yoshihito Inoue ◽  
Koji Okabe ◽  
Hiroyuki Soeda

The purpose of this study was to investigate the actions of estradiol on spontaneous and evoked action potentials in the isolated longitudinal smooth muscle cells of the pregnant rat. Single cells were obtained by enzymatic digestion from pregnant rat longitudinal myometrium. Action potentials and currents were recorded by whole-cell current-clamp and voltage-clamp methods, respectively. The acute effects of 17β-estradiol on action potentials and inward and outward currents were investigated. The following results were obtained. The average resting membrane potential of single myometrial cells was -54 mV (n = 40). In many cells, an electrical stimulation evoked a membrane depolarization, and action potentials were superimposed on the depolarization. In some cells, spontaneous action potentials were observed. Estradiol (30 µM) slightly depolarized the membrane (ca. 5 mV) and attenuated the generation of action potentials by reducing the frequency and amplitude of the spikes. Afterhyperpolarization was also attenuated by estradiol (30 µM). On the other hand, in 5 of 35 cells, estradiol increased the first spike amplitude and action potential duration, while frequency of the spike generation and afterhyperpolarization were inhibited. In voltage-clamped muscle cells, estradiol inhibited both inward and outward currents. Acute inhibition or augmentation of spike generation by estradiol is due to the balance of inhibition of inward and outward currents. Inhibition of both currents also prevented afterhyperpolarization, causing potential-dependent block of Ca spikes.Key words: estradiol, progesterone, rat myometrium, action potential, channel current.


1988 ◽  
Vol 232 (1269) ◽  
pp. 395-412 ◽  

The cell-attached and excised inside-out patch-clamp techniques were used to study single-channel characteristics of potassium channels in cultured human and avian fibroblasts. Six different potassium channels were distinguished with conductances of 235 ± 25, 190 ± 57, 114 ± 27, 77 ± 14, 40 ± 6 and 21 ± 4 pS in symmetric 140 mM potassium solutions. The channels were separable by their conductances, ion-selectivities, voltage-sensitivities and kinetic properties. All six channels were found in both fully differentiated human skin fibroblasts and primary cultures of 72 h chick sclerotome. The largest channel (235 pS) had a steep bimodal voltage dependence, being open only around the resting membrane potential. It was imperfectly selective for potassium, having a relative sodium : potassium permeability of 0.3. The 190 pS channel was very potassium-selective, had an S-shaped voltage sensitivity and was calcium-dependent. The two intermediate-size channels (114 and 77 pS) had open probabilities of less than 0.5 under all of the conditions we used. They were not completely selective for potassium and were not voltage-sensitive. The two smallest channels (40 and 21 pS) were not well characterized. They both had open probabilities of less than 0.2 and showed no evidence of voltage-sensitivity. The 40 pS channel seemed highly potassium-selective. A suction stimulus was used to test all observed channels for mechanosensitivity but none of the six potassium channels was mechanosensitive. Another small channel, with very clear mechanical sensitivity, was seen on a few occasions; this channel has not yet been characterized.


2003 ◽  
Vol 284 (3) ◽  
pp. G392-G398 ◽  
Author(s):  
Edward Parr ◽  
Maria J. Pozo ◽  
Burton Horowitz ◽  
Mark T. Nelson ◽  
Gary M. Mawe

The current study was undertaken to test the existence and possible role of ether-a-go-go-related gene 1 (ERG1) protein K+ channels in gallbladder smooth muscle (GBSM). Transcripts encoding ERG1 were detected in human, mouse, and guinea pig GBSM, and ERG1 immunoreactivity was observed in GBSM cells. In intracellular voltage recordings, addition of E-4031 (100 nM–1 μM) or cisapride (100 nM–2 μM) caused concentration-dependent excitation of guinea pig GBSM that was not affected by 500 nM TTX + 5 μM atropine, and E-4031 also depolarized the resting membrane potential. In muscle strip studies, E-4031 either induced phasic contractions or significantly increased the amplitude of phasic contractions in spontaneously active tissues ( P = 0.001). E-4031 also potentiated bethanechol-induced contractions. In conclusion, ERG1 channels are expressed in the GBSM, where they play a role in excitation-contraction coupling probably by contributing to repolarization of the plateau phase of the action potential and to the resting membrane potential.


2006 ◽  
Vol 23 (5) ◽  
pp. 825-832 ◽  
Author(s):  
DAO-QI ZHANG ◽  
ZIYI SUN ◽  
DOUGLAS G. MCMAHON

Extracellular Ca2+ and Zn2+ influence many aspects of retinal function. Here, we examined the effect of external Ca2+ and Zn2+ on potassium channels of retinal horizontal cells. When extracellular Ca2+ was lowered from 3 mM to 0.3 mM, horizontal cell transient outward currents elicited by voltage steps from resting membrane potential (−70 mV) were decreased by approximately 50%, whereas the sustained currents remained unchanged. This effect was due to a hyperpolarizing shift in the steady-state inactivation curve of A-type K+ currents when extracellular Ca2+ concentration was lowered. The mean half inactivation potential of the steady-state inactivation curves was hyperpolarized from −56.3 ± 4.7 mV in 3 mM Ca2+ to −76.4 ± 3.9 mV in 0.3 mM Ca2+. Neither the state-steady activation curve nor the kinetics of inactivation was significantly changed in low extracellular Ca2+. The addition of 30 μM Zn2+ restored peak outward currents in 0.3 mM Ca2+. The half inactivation voltages were depolarized from −70 ± 2.8 mV in 0.3 mM Ca2+ to −56 ± 2.6 mV in 0.3 mM Ca2+ plus 30 μM Zn2+. Taken together, the results indicate that external Ca2+ and Zn2+ maintain the activity of A-type potassium channels in retinal horizontal cells by influencing the voltage dependence of steady-state inactivation.


Sign in / Sign up

Export Citation Format

Share Document