X-Ray Spectrographic Analysis of the 3-d Transition Metal Corrosion Products Using Potassium Bromide Disks*

1963 ◽  
Vol 7 ◽  
pp. 590-597
Author(s):  
L. A. Schluter

AbstractA technique has been developed for quantitative analysis of the major constituents in small samples (less than 0.1 g) of corrosion products found On various missile parts. The technique was developed primarily to aid in interpretation of X-ray diffraction patterns of multicomponent corrosion products. The corrosion sample is mixed with KBr and the mixture is pressed into a disk in the same fashion commonly used in infrared work. The Br Kβ1 line serves as an internal standard. Intensities of the element's Kα line and the internal standard are established by scanning through the appropriate Bragg angle and recording peak heights on a strip-chart recorder. A xenon-filled proportional detector and a pulse-height analyzer were used.The percent of an element is determined by references to calibration curves which relate intensity ratios to weight ratios for the 3-d transition metals. The oxides of the metals were used in the preparation of the calibration curves. The weight ratio vs. intensity ratio relationship is linear over the weight ratio range 0.01 to 0.11. Data were collected using an air path and a helium path; the higher intensity ratios obtained with, the helium path, and the dependence of intensity on atomic number are illustrated. A comparison is made between the intensity ratios in a KBr matrix and in a NaBr matrix. The technique developed requires about 15 min sample preparation time.

Sequences of high Bragg-angle (0 B = 74°) double-crystal X-ray topographs taken at the SRS (Daresbury, U.K.) have yielded precise measurements of lattice parameter differences between growth sectors of different crystallographic forms in a large undoped synthetic diamond whose type Ib infrared absorption spectrum (principal peak at 1130 cm -1 ) indicated atomically dispersed nitrogen, singly substituting for carbon, as the only detectable impurity. The plate-shaped specimen, polished parallel to (110), 5.0 x 3.2 mm 2 in area, 0.7 mm thick, possessed an unusually well developed (110) growth sector containing nitrogen impurity concentration of only ca. 10 -6 , which served as an internal standard of pure-diamond lattice parameter with which lattice parameters of nitrogen-containing growth sectors were compared. The specimen’s suitability for precision diffractometry was checked by comprehensive tests using optical microscope techniques, cathodoluminescence and single-crystal X-ray topography. The double-crystal combination was silicon reference crystal, asymmetric 175 reflection, with diamond specimen symmetrical 440 reflection. The principal measurement was the increase of the lattice parameter, a 0 , of the (111) growth sector (nitrogen content 88 + 7 parts per 10 6 atomic) relative to that of the (110) sector: Aa 0 / a 0 = 1.18 + 0.07 x 10 -5 . In terms of measured infrared absorption coefficient at 1130 cm -1 , this gives Aa 0/a 0 = (2.95 + 0.27) x 10 -6 [p(1130 cm -1 )/cm -1 ], which is believed to hold for growth sectors of all crystallographic forms. Combination with the nitrogen assay findings of Woods, van Wyk & Collins ( Phil. Mag. B 62. 589-595 (1990)) provides a direct relation to c N , the fractional atomic concentration of substitutional nitrogen, as A a 0 / a 0 = (0.14 + 0.02) c N , which indicates that the effective volume of a single substitutional nitrogen atom in diamond is 1.41 +0.06 times that of the carbon atom it replaces. This substantial dilatation conflicts with several models for the substitutional nitrogen structure.


1968 ◽  
Vol 22 (5) ◽  
pp. 434-437 ◽  
Author(s):  
E. A. Hakkila ◽  
R. G. Hurley ◽  
G. R. Waterbury

Two methods were evaluated for determining rare earths in plutonium: (1) For the lighter rare earths ( Z≦66), or low concentrations of the heavier rare earths, an adjacent rare earth was added as a carrier and also as an internal standard, the rare earths were separated from plutonium by fluoride precipitation, and the measured intensity ratios for the sample and for solutions having known concentrations were compared. The Lβ1 x-rays were measured for the lighter rare earths and the Lα1 x rays for the remaining lanthanides. (2) For the heavier rare earths ( Z>66), the Lα1 x-ray intensities were measured from a nitric acid solution of the sample and compared to intensities obtained for solutions having known concentrations. The minimum concentrations that could be measured with a relative standard deviation no greater than 4% by the separation internal standard method varied from approximately 0.5% for lanthanum to 0.01% for lutetium. The direct measurement of x-ray intensity was much less sensitive. Applicability of the methods was shown by successful analyses of plutonium alloys containing dysprosium, thulium, or lutetium.


1966 ◽  
Vol 10 ◽  
pp. 213-220 ◽  
Author(s):  
R. W. Spor ◽  
H. Claus ◽  
Paul A. Beck

AbstractX-ray powder pattern line intensities were measured for the (Cr, Re)σ and (Re, Fe)σ phases by a step-scanning diffractometer, using CrKα radiation, scintillation counter, and a pulse height analyzer. The measured intensity ratios for all available pairs of adjacent lines were compared by means of a computer with the corresponding calculated intensity ratios based on approximately 1800 different ordering schemes for each alloy. The results showed ordering in both alloys, and indicated that the ordering was based on atomic size. These results are different from those obtained previously by Kasper and Waterstrat (no ordering), and by Ageyev et al. [In (Cr, Re)σ the Cr atoms are preferentially in large coordination number positions.]


Clay Minerals ◽  
1967 ◽  
Vol 7 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Ronald J. Gibbs

AbstractIn the quantitative X-ray diffraction analysis of a series of samples, the problems arising from the variable compositions and degrees of crystallinity of clay minerals were overcome to a great extent by the use of standards extracted from the samples. Procedures are given for separation of the montmorillonite standard by differential settling of Na-montmorillonite solvated in an ethanol solution and for isolation of the kaolinite, mica, and chlorite standards by density separation of their Na-forms in thallous formate.Calibration curves were prepared from the X-ray diffractograms obtained for series of known mixtures of Ca-forms of the standards and the internal standard boehmite using both powder and smear-oriented mounting techniques.


1991 ◽  
Vol 6 (2) ◽  
pp. 70-73
Author(s):  
M.C. Osácar Soriano ◽  
J. Besteiro Ráfales ◽  
J. González Martínez

AbstractA procedure for Sr-analysis of vein barites by X-ray powder diffraction is described. It is based on the measurement of barite d210 spacing change referenced to NaCl as the internal standard. This procedure covers a range of Sr isomorphic substitution of 0 to 12% SrSO4. Comparison with other values, derived from literature data, shows they are in good agreement with the experimental ones. Statistical analysis of the results yields a maximum absolute error of ±0.50 %SrSO4 in Sr determination. This measurement error proves to be acceptable for most studies of barite in mineral deposits. The effect of Pb-substitution is smaller, in most cases, than this error.The reported method has the advantage of being fast and simple. It can routinely handle large number of samples as well as small samples isolated from large crystals. Moreover, it allows the recovery of the original sample after the analysis by dissolving the NaCl in water. The main disadvantage is that fair amounts of quartz interfere with the measurement of the position of the barite 210 line.


1992 ◽  
Vol 7 (4) ◽  
pp. 197-199
Author(s):  
K. P. Zangalis

AbstractIn most of the practical problems of the quantitative X-ray analysis, obtaining working equations including only intensity ratios without the sample mass-absorption coefficient is impossible, unless an internal standard is added to the sample. It is shown that the internal standard may be unnecessary if some chemical data are added to the XRD information used. Experimental results justify this claim.


1988 ◽  
Vol 34 (2) ◽  
pp. 289-293 ◽  
Author(s):  
M A Wandt ◽  
A L Rodgers

Abstract The internal-standard method and the powder diffractometer have been applied here to the quantitative determination of urinary stone constituents by x-ray diffraction (XRD). Reference intensity ratios determined for six stone substances were used in the reduction of intensity data. Constituent concentrations calculated for 21 stones were compared with values obtained from an element-sensitive technique. We conclude that XRD analysis alone cannot be regarded as a routine technique for the quantitative characterization of uroliths, but that semiquantitative XRD analysis supplemented by accurate quantitative elemental data is more suitable for the precise determination of true stone composition.


Author(s):  
Gerhard Eggert

Information taken from David A. Scott’s book “Copper and Bronze in Art” was crucial for research on copper corrosion products in Stuttgart. Examples discussed are the nature and variability of ‘Black Spots’ (aka ‘Brown Fuzzies’); cupric hydroxide by cleaning, patination, and pigment synthesis; the wondrous phenomenon of curly malachite; chalconatronite formed by contact to soda glass; the formation of copper formates by glass-induced metal corrosion; and synthesis and X-ray diffraction of basic copper acetates (‘verdigris’).


Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


Sign in / Sign up

Export Citation Format

Share Document