Applications of X-ray Diffraction Crystallite Size/Strain Analysis to Seismosaurus Dinosaur Bone

1990 ◽  
Vol 34 ◽  
pp. 473-482 ◽  
Author(s):  
Steve J. Chipera ◽  
David L. Bish

AbstractRecently, the remains of a giant Cretaceous Sauropod (~150 My old) were discovered in the Morrison Formation west of Albuquerque, New Mexico. This dinosaur, tentatively named Seismosaurus, was found in an exceptional state of preservation. Although it has been known since the 180Q's that fossilized bone is often composed of the mineral apatite, very few studies have been conducted to characterize farther the fossilized material. In an effort to gain insight into the state of preservation and Hie processes occurring in the bone since deposition, apatite in bone from Seismosaurus was compared with that from a contemporary elk from the Jemez Mountains, New Mexico, and with well-crystallized mineral apatite using X-ray powder diffraction and profile analysis techniques. Crystallite size/strain analyses were conducted using the Scherrer equation, the Warren-Averbaca and single-line methods, and the Rietveld method using the program GSAS. Heating the contemporary elk bone produced a decrease in the full-width-at-half-maximum (FWHM) of the reflections in the diffraction pattern. This decrease in FWHM is due to a decrease in microstrain along with a minor increase in crystallite size. Results from crystallite size/strain analysis show that both Seismosaurus and contemporary elk bone crystallites are elongate parallel to the c-axis. However, Seismosaurus bone crystallites are larger (-20-65 nm) with less strain than the contemporary elk bone crystallites (-8-20 nm), suggesting that if elk bone is an appropriate analog, then Seismosaurus bone must have undergone recrystallization.

2005 ◽  
Vol 38 (6) ◽  
pp. 912-926 ◽  
Author(s):  
G. Ribárik ◽  
N. Audebrand ◽  
H. Palancher ◽  
T. Ungár ◽  
D. Louër

The dislocation densities and crystallite size distributions in ball-milled fluorides,MF2(M= Ca, Sr, Ba and Cd), of the fluorite structure type have been determined as a function of milling time by X-ray diffraction line-profile analysis. The treatment has been based on the concept of dislocation contrast to explain strain anisotropy by means of the modified Williamson–Hall and Warren–Averbach approaches and a whole-profile fitting method using physically based functions. In most cases, the measured and calculated patterns are in perfect agreement; however, in some specific cases, the first few measured profiles appear to be narrower than the calculated ones. This discrepancy is interpreted as the result of an interference effect similar to that described by Rafaja, Klemm, Schreiber, Knapp & Kužel [J. Appl. Cryst.(2004),37, 613–620]. By taking into account and correcting for this interference effect, the microstructure of ball-milled fluorides is determined in terms of dislocation structure and size distributions of coherent domains. A weak coalescence of the crystallites is observed at longer milling periods. An incubation period in the evolution of microstrains is in correlation with the homologous temperatures of the fluorides.


2012 ◽  
Vol 329 ◽  
pp. 19-28 ◽  
Author(s):  
M. Gherib ◽  
A. Otmani ◽  
A. Djekoun ◽  
A. Bouasla ◽  
M. Poulain ◽  
...  

Nanostructured Powders of Ni-20wt%Al and Ni-50wt%Al Were Prepared, by Mechanical Alloying under an Argon Atmosphere, from Elemental Ni and Al Powders Using a Planetary Ball Mill (type Fritsch P7) for Different Times (0.5-24h).). Microstructural and Structural Features of the Final Products Were Characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). the Results of the XRD Shows the Formation of the B2 (Ni Al) Phase after 2 Hours of Milling for both Systems. Also Detected Was the Ni3al Phase in Ni80al20after 4 Hours. Crystallite Size Refinement of the Final Product Occurred down to Nanometer Scales when the Milling Time Increased, and Attained 17 Nm in the Ni50al50System and 20 Nm in the other System, at 24 Hours. this Decrease in Crystallite Size Is Accompanied by an Increase in the Interval Level Strain. the Kinetics of Al Dissolution during the Milling Process of Ni50al50System Can Be Described by Two Regimes, Characterised by Different Values of Avrami Parameters which Are Calculated by Using the Johnson–Mehl–Avrami Formalism.


2003 ◽  
Vol 36 (6) ◽  
pp. 1411-1416 ◽  
Author(s):  
Z. K. Heiba ◽  
Y. Akin ◽  
W. Sigmund ◽  
Y. S. Hascicek

Polycrystalline samples of (Eu1−xYbx)2O3(x= 0.0, 0.1, 0.2, 0.5, 0.8, 0.9 and 1.0) were synthesized by a sol–gel process. X-ray diffraction data were collected and the crystal structures were refined by the Rietveld method. All samples are found to have the same crystal system and formed solid solutions over the whole range ofx. The lattice parameters are found to vary linearly with the compositionx. The cationic distribution over the two non-equivalent sites 8band 24dof the space group Ia{\bar 3} is found to be random in the range 0.0 <x≤ 0.5 and preferential in the range 0.5 <x≤ 1.0. Replacing Eu3+and Yb3+by each other introduces slight changes in the atomic coordinates. Crystallite size and microstrain analysis are performed on single and multiple orders for each sample using profile fitting and the Warren–Averbach method. The obtained values of microstrain are correlated with the distribution of the rare earth (RE) ions over the two cationic sites of the structure. The average crystallite size ranges from 35 to 96 nm and the mean-square strain from 0.052 to 0.225 × 10−2.


2000 ◽  
Vol 634 ◽  
Author(s):  
T. Ungár ◽  
G. Tichy ◽  
P. G. Sanders ◽  
J. R. Weertman

ABSTRACTUsing the dislocation model of strain anisotropy in X-ray diffraction peak profile analysis it is shown that in nanocrystalline copper produced by inert gas condensation dislocations are present, at least, down to average grain sizes of the order of 20 nm. Based on the analysis of the dislocation contrast factors it is suggested that with decreasing grain size the proportion of Lomer-Cottrell type dislocations increases.


2020 ◽  
Vol 20 (3) ◽  
pp. 61-65
Author(s):  
ISMAIL ISMAIL ◽  
RESI MULIANI ◽  
ZULFALINA ZULFALINA ◽  
SITI HAJAR SHEIKH MD FADZULLAH

Magnesium powder has become an important material in the development of science and technology such as alloy and hydrogen storage. In this work, the chemical composition, crystallite size, and crystal structure of the magnesium powder sample have been studied by using x-ray fluorescent and x-ray diffraction. The x-ray diffraction data of the magnesium powder sample was analyzed by using the Rietveld method to obtain the crystal structure. Our results show that the purity of our magnesium powder sample is 93.1%. Our sample has good crystallinity with the average crystallite size of 31 nm. The crystal structure is found to be a hexagonal closed-packed structure with the lattice constants of 3.2100 Å (a and b-axis) and 5.2107 Å (c-axis). Our result revealed that the lattice constant in the c-axis of magnesium powder is influenced by impurity. This finding suggests that the impurity can affect the crystal structure of a material in general.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1841
Author(s):  
Edgar Pio ◽  
Ariosto Medina ◽  
Carola Martínez ◽  
Felipe Manuel Castro Cerda ◽  
Claudio Aguilar

Four titanium alloys (Ti-Ta, Ti-Ta-Sn, Ti-Ta-Mn, and Ti-Nb-Sn) were synthesized by mechanical alloying (MA) in a planetary mill in different times between 2 h and 100 h. The microstructure characterization was made by X-ray diffraction (XRD), in which the Rietveld method was applied to analyze the diffraction patterns. The study demonstrated that after short milling times between 2 h and 30 h, the fraction of hexagonal close-packed (hcp) phase decreases; at the same time, the formation of body-centered cubic (bcc) and face-centered cubic (fcc) Ti phases are promoted. Additionally, after 30 h of MA, the full transformation of hcp-Ti was observed, and the bcc-Ti to fcc-Ti phase transformation took place until 50 h. The results suggest that the addition of Ta and Sn promotes the fcc-Ti phase formation, obtaining 100% of this phase at 50 h onwards, whereas Nb and Mn show the opposite effect.


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Ashok Bhakar ◽  
Pooja Gupta ◽  
P. N. Rao ◽  
M. K. Swami ◽  
Pragya Tiwari ◽  
...  

Room-temperature synchrotron X-ray diffraction and subsequent detailed line profile analysis of Fe powder were performed for microstructural characterization. The peak shapes of the diffraction pattern of Fe were found to be super-Lorentzian in nature and the peak widths were anisotropically broadened. These peak profile features of the diffraction pattern are related to the microstructural parameters of the material. In order to elucidate these features of the diffraction pattern, detailed line (peak) profile analyses were performed using the Rietveld method, modified Williamson–Hall plots and whole powder pattern modelling (WPPM), and related microstructural parameters were determined. Profile fitting using the Rietveld and WPPM methods with a single microstructural (unimodal) model shows systematic deviation from the experimentally observed diffraction pattern. On the basis of Rietveld analysis and microstructural modelling it is revealed that the microstructure of Fe consists of two components (bimodal profile). The microstructural parameters of crystallite/domain size distribution, dislocation density, nature of dislocations and phase fraction were evaluated for both components. The results obtained using different methods are compared, and it is shown that diffraction peak profile analysis is capable of modelling such inhomogeneous bimodal microstructures.


1990 ◽  
Vol 34 ◽  
pp. 501-506
Author(s):  
Frank E. Briden ◽  
David F. Natschke

We have been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predict the reactivity of solid calcium hydroxide sorbent with acid gases in combustion streams. The development of the method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique has been reported by Briden and Natschke and Briden.The software used for the calculations requires that the XRD peak profile be corrected with a distribution function before application in the Warren-Averbach analysis. The reason for this according to the software developer, Gerhard Zorn, of the Siemens Munich Laboratory, is that he has shown that contributions to the profile from alien peaks and random noise can have serious effects on the Warren-Averbach analysis. The fitting of (he experimental XRD peak with a distribution function provides an effective means for filtering out both contributions.


Sign in / Sign up

Export Citation Format

Share Document