scholarly journals Modeling of Thermal Effects in Semiconductor Structures

VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 53-58
Author(s):  
Christopher M. Snowden

A fully coupled electro-thermal hydrodynamic model is described which is suitable for modelling active devices. The model is applied to the non-isothermal simulation of pseudomorphic high electron mobility transistors (pHEMTs). A large-scale surface temperature model is described which allows thermal modelling of semiconductor devices and monolithic circuits. An example of the application of thermal modelling to monolithic circuit characterization is given.

2011 ◽  
Vol 61 (1) ◽  
pp. 1-6 ◽  
Author(s):  
I. Saidi ◽  
Y. Cordier ◽  
M. Chmielowska ◽  
H. Mejri ◽  
H. Maaref

2003 ◽  
Vol 13 (01) ◽  
pp. 265-275
Author(s):  
S. MANOHAR ◽  
A. PHAM ◽  
J. BROWN ◽  
R. BORGES ◽  
K. LINTHICUM

This paper presents the development of microwave Gallium nitride (GaN) heterostructure field-effect transistors (HFETs) on silicon (Si). GaN-on-Si provides a low-cost manufacturable platform that could lead to the commercialization of GaN-based power devices for wireless applications. Small periphery GaN high electron mobility transistors (HEMTs) on Si exhibited a maximum drain current of 900mA/mm, a peak gm of 300 mS/mm, and a microwave output power density of 1.5 W/mm at 2 GHz. Microwave characterization and device modeling of GaN HEMTs on Si are discussed.


2003 ◽  
Vol 764 ◽  
Author(s):  
B. Luo ◽  
F. Ren ◽  
M. A. Mastro ◽  
D. Tsvetkov ◽  
A. Pechnikov ◽  
...  

AbstractHigh quality undoped AlGaN/GaN high electron mobility transistors(HEMTs) structures have been gorwn by Hydride Vapor Phase Epitaxy (HVPE). The morphology of the films grown on Al2O3 substrates is excellent with root-mean-square roughness of ∼0.2nm over 10×10μm2 measurement area. Capacitance-voltage measurements show formation of dense sheet of charge at the AlGaN/GaN interface. HEMTs with 1μm gate length fabricated on these structures show transconductances in excess of 110 mS/mm and drain-source current above 0.6A/mm. Gate lag measurements show similar current collapse characteristics to HEMTs fabricated in MBE- or MOCVD grown material.


Author(s):  
Lény Baczkowski ◽  
Franck Vouzelaud ◽  
Dominique Carisetti ◽  
Nicolas Sarazin ◽  
Jean-Claude Clément ◽  
...  

Abstract This paper shows a specific approach based on infrared (IR) thermography to face the challenging aspects of thermal measurement, mapping, and failure analysis on AlGaN/GaN high electron-mobility transistors (HEMTs) and MMICs. In the first part of this paper, IR thermography is used for the temperature measurement. Results are compared with 3D thermal simulations (ANSYS) to validate the thermal model of an 8x125pm AIGaN/GaN HEMT on SiC substrate. Measurements at different baseplate temperature are also performed to highlight the non-linearity of the thermal properties of materials. Then, correlations between the junction temperature and the life time are also discussed. In the second part, IR thermography is used for hot spot detection. The interest of the system for defect localization on AIGaN/GaN HEMT technology is presented through two case studies: a high temperature operating life test and a temperature humidity bias test.


Sign in / Sign up

Export Citation Format

Share Document