scholarly journals On Antiresonance in the Forced Response of Mistuned Bladed Disks

2003 ◽  
Vol 10 (2) ◽  
pp. 135-146 ◽  
Author(s):  
Keith Jones ◽  
Charles Cross

Mistuning in bladed disks usually increases the forced response of the maximum responding blade leading to shortened component life in turbine engines. This paper investigates mistuning using a transfer function approach where the frequency response functions (FRFs) are described by natural frequencies and antiresonant frequencies. Using this approach, antiresonant frequencies are shown to be a critical factor in determining the maximum blade response. Two insights are gained by formulating antiresonant frequencies as the eigenvalues of reduced system matrices: 1) Mistuning a particular blade has no effect on that blade's antiresonant frequencies. 2) Engine orders N and N/2, where N is the number of blades on the disk, tend to produce the highest maximum local response. Numerical examples are given using a spring-mass-oscillator model of a bladed disk. Pole-zero loci of mistuned bladed disks show that increased maximum blade response is often due to the damping of antiresonant frequencies. An important conclusion is that antiresonant frequencies can be arranged such that a mistuned bladed disk has a lower maximum blade response than a tuned bladed disk.

Author(s):  
M. Ersin Yu¨mer ◽  
Ender Cig˘erog˘lu ◽  
H. Nevzat O¨zgu¨ven

Mistuning affects forced response of bladed disks drastically; therefore, its identification plays an essential role in the forced response analysis of realistic bladed disk assemblies. Forced response analysis of mistuned bladed disk assemblies has drawn wide attention of researchers but there are a very limited number of studies dealing with identification of mistuning, especially if the component under consideration is a blisk (integrally bladed disk). This paper presents two new methods to identify mistuning of a rotor from the assembly modes via utilizing neural networks. It is assumed that a tuned mathematical model of the rotor under consideration is readily available, which is always the case for today’s realistic bladed disk assemblies. In the first method, a data set of selected mode shapes and natural frequencies is created by a number of simulations performed by mistuning the tuned mathematical model randomly. A neural network created by considering the number of modes, is then trained with this data set. Upon training the network, it is used to identify mistuning of the rotor from measured data. The second method further improves the first one by using it as starting point of an optimization routine and carries out an optimization to identify mistuning. To carry out identification analysis by means of the proposed methods, there are no limitations on the number of modes or natural frequencies to be used. Thus, they are suitable for incomplete data as well. Moreover, since system modes are used rather than blade alone counterparts, the techniques are ready to be used for analysis of blisks. Case studies are performed to demonstrate the capabilities of the new methods, using two different mathematical models to create training data sets; a lumped-parameter model and a relatively realistic reduced order model. Throughout the case studies, the effects of using incomplete mode families and random errors in assembly modes are investigated.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Mehmet Ersin Yumer ◽  
Ender Cigeroglu ◽  
H. Nevzat Özgüven

Mistuning affects forced response of bladed disks drastically; therefore, its identification plays an essential role in the forced response analysis of bladed disk assemblies. Forced response analysis of mistuned bladed disk assemblies has drawn wide attention of researchers but there are a very limited number of studies dealing with identification of mistuning, especially if the component under consideration is an integrally bladed disk (blisk). This paper presents two new methods to identify mistuning of a bladed disk from the assembly modes via utilizing cascaded optimization and neural networks. It is assumed that a tuned mathematical model of the blisk under consideration is readily available, which is always the case for today’s realistic bladed disk assemblies. In the first method, a data set of selected mode shapes and natural frequencies is created by a number of simulations performed by mistuning the tuned mathematical model randomly. A neural network created by considering the number of modes, is then trained with this data set. Upon training the network, it is used to identify mistuning of the rotor from measured data. The second method further improves the first one by using it as a starting point of an optimization routine and carries out an optimization to identify mistuning. To carry out identification analysis by means of the proposed methods, there are no limitations on the number of modes or natural frequencies to be used. Thus, unlike existing mistuning identification methods they are suitable for incomplete data as well. Moreover, since system modes are used rather than blade alone counterparts, the techniques are ready to be used for analysis of blisks. Case studies are performed to demonstrate the capabilities of the new methods by using two different mathematical models to create training data sets a lumped-parameter model and a relatively realistic reduced order model. Throughout the case studies, the effects of using incomplete mode families and random errors in assembly modes are investigated. The results show that, the proposed method utilizing cascaded optimization and neural networks can identify mistuning parameters of a realistic blisk system with an exceptional accuracy even in the presence of incomplete and noisy test data.


Author(s):  
Adam Koscso ◽  
Guido Dhondt ◽  
E. P. Petrov

A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.


Author(s):  
Adam Koscso ◽  
E. P. Petrov

Abstract One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions. The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks. The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.


Author(s):  
Marc P. Mignolet ◽  
Alejandro Rivas-Guerra

The focus of the present investigation is on the estimation of the dynamic properties, i.e. masses, stiffnesses, natural frequencies, mode shapes and their statistical distributions, of turbomachine blades to be used in the accurate prediction of the forced response of mistuned bladed disks. As input to this process, it is assumed that the lowest natural frequencies of the blades alone have been experimentally measured, for example in a broach block test. Since the number of measurements is always less than the number of unknowns, this problem is indeterminate in nature. Two distinct approaches will be investigated to resolve the shortfall of data. The first one relies on the imposition of as many constraints as needed to insure a unique solution to this identification problem. Specifically, the mode shapes and modal masses of the blades are set to their design/tuned counterparts while the modal stiffnesses are varied from blade-to-blade to match the measured natural frequencies. The second approach, based on the maximum likelihood principle, yields estimates of all the structural parameters of the blades through the minimization of a specified “cost function”. The accuracy of these two techniques in predicting the forced response of mistuned bladed disks will be assessed on simple dynamic models of the blades.


1985 ◽  
Vol 107 (1) ◽  
pp. 205-211 ◽  
Author(s):  
J. H. Griffin ◽  
A. Sinha

This paper summarizes the results of an investigation to establish the impact of mistuning on the performance and design of blade-to-blade friction dampers of the type used to control the resonant response of turbine blades in gas turbine engines. In addition, it discusses the importance of friction slip force variations on the dynamic response of shrouded fan blades.


Author(s):  
John Judge ◽  
Christophe Pierre ◽  
Oral Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, twelve-bladed disk with simple geometry is subjected to a traveling-wave, out-of-plane, “engine order” excitation delivered via phase-shifted control signals sent to piezo-electric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different blades of random lengths. Both specimens are subject to traveling-wave excitations delivered by piezo-electric actuators. The primary aim of the experiment is to demonstrate the occurrence of an increase in forced response blade amplitudes due to mistuning, and to verify analytical predictions about the magnitude of these increases. In particular, the impact of localized mode shapes, engine order excitation, and disk structural coupling on the sensitivity of forced response amplitudes to blade mistuning is reported. This work reports one of the first systematic experiments carried out to demonstrate and quantify the effect of mistuning on the forced response of bladed disks.


Aerospace ◽  
2006 ◽  
Author(s):  
Hongbao Yu ◽  
K. W. Wang

Extensive investigations have been conducted to study the vibration localization phenomenon and the excessive forced response that can be caused by mistuning in bladed disks. Most previous researches have focused on attacking the mistuning issue in the bladed disk, such as reducing the sensitivity of the structure to mistuning through mechanical tailoring, or design optimization. Few have focused on developing effective vibration control methods for such systems. This study extends the piezoelectric network concept, which has been utilized for mode delocalization in periodic structures, to the control of mistuned bladed disks under engine order excitation. A piezoelectric network is synthesized and optimized to effectively suppress the excessive vibration in the bladed disk caused by mistuning. One of the merits of such an approach is that the optimum design is independent of the number of spatial harmonics, or engine orders. Local circuits are first formulated by connecting inductors and resistors with piezoelectric patches on the individual blades. While these local circuits can function as conventional damped absorber when properly tuned, they do not perform well for bladed disks under all engine order excitations. To address this issue, capacitors are introduced to couple the individual local circuitries. Through such networking, an absorber system that is independent of the engine order can be achieved. Monte Carlo simulation is performed to investigate the effectiveness of the network for bladed disk with a range of mistuning level of its mechanical properties. The robustness issue of the network in terms of detuning of the electric circuit parameters is also studied. Finally, negative capacitance is introduced and its effect on the robustness of the network is investigated.


Author(s):  
Evange´line Capiez-Lernout ◽  
Christian Soize ◽  
Jean-Pierre Lombard ◽  
Christian Dupont ◽  
Eric Seinturier

This paper deals with the characterization of the blade manufacturing geometric tolerances in order to get a given level of amplification in the forced response of a mistuned bladed-disk. It is devoted to an industrial application in order to validate the theory previously developed [1] and in order to show that this theory is suited to any industrial bladed-disks. It should be noted that the development of an adapted methodology for solving the inverse problem, in order to characterize the manufacturing tolerances, is an important challenge for industries in this area. Let us recall that this theory is based on the use of a nonparametric probabilistic model of random uncertainties in the blade [2]. The dispersion parameters controlling the nonparametric model are estimated as a function of the geometric tolerances. Such an identification is carried out in a computational context by using the numerical Monte Carlo simulation and by using the reduced model method presented in [3]. The industrial application is devoted to the mistuning analysis of a 22 blades wide chord fan stage. Centrifugal stiffening due to rotational effects is also included. The results obtained validate the efficiency and the reliability of the method on three dimensional bladed disks.


Sign in / Sign up

Export Citation Format

Share Document