scholarly journals Molecular spectroscopy analysis of the substitution of bone tissue by HAp/PLLA composite biomaterial

2004 ◽  
Vol 18 (4) ◽  
pp. 553-565 ◽  
Author(s):  
Nenad Ignjatovic ◽  
Dragan Uskokovic

Due to its pronounced osteoinductive properties, calcium hydroxyapatite (HAp) has been widely used in medicine. Bioresorptive poly-L-lactide (PLLA) as a polymer biomaterial has been also used extensively in medicine for its non-toxicity and biocompatibility. To combine the advantages exhibited by each of these materials, a HAp/PLLA composite biomaterial has been synthesized and used for reconstruction and repair of bone defects. Hydroxyapatite/poly-L-lactide (HAp/PLLA) composite biomaterial with PLLA of 50,000 and 430,000 g/mole molecular weight was studiedin vivo. The biocomposite with PLLA of both molecular weights was implanted into mice, then removed from their organisms and analyzed by the Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and histopathologic analysis. Characteristic absorption bands, registered and defined by FT-IR spectroscopy, confirm the formation of new functional groups and compounds during the bone repair process using HAp/PLLA biocomposite with PLLA of 50,000 and 430,000 molecular weights. Analysis of the microstructures of the sample surfaces by scanning electron microscopy (SEM) before and after implantation revealed bioresorption of the PLLA polymer phase in the system with PLLA of lower molecular weight and generation of collagen fibers at the sites of implanted bioresorptive PLLA. As the studied synthetic materials behave as the natural bone, i.e., they are phagocytosed and resorpable, they can be considered as biocompatible.

2008 ◽  
Vol 66 (2) ◽  
pp. 260-265 ◽  
Author(s):  
Jamil R. Memon ◽  
Saima Q. Memon ◽  
M.I. Bhanger ◽  
G. Zuhra Memon ◽  
A. El-Turki ◽  
...  

2017 ◽  
Vol 888 ◽  
pp. 136-140 ◽  
Author(s):  
Suzi Salwah Jikan ◽  
Nur Azam Badarulzaman ◽  
Shehu Yahaya ◽  
Ajiya Dahiru Adamu

The effect of milling on structure of kaolinite-urea intercalates were studied. Untreated and treated kaolinite samples were examined by Field scanning electron microscopy (FESEM), X-ray powder diffraction (XRPD) and Fourier transform infrared (FT-IR) spectroscopy. The basal spacing of kaolinite measured by X-ray powder diffraction (XRPD) increased from 1.02 to 3.62 nm after intercalation by urea. Significantly, nature of intercalation was reached through formation of hydrogen bonds between urea and both Si-O and AlOH groups of the interlayer surface of kaolinite.


2016 ◽  
Vol 66 (2) ◽  
pp. 234-244
Author(s):  
Ljubiša Đorđević ◽  
Stevo Najman ◽  
Perica Vasiljević ◽  
Miroslav Miljković ◽  
Nenad Ignjatović ◽  
...  

Abstract Implantation of a biomaterial is one of the important trends in solving the problem of bone tissue loss. Calcium hydroxiapatite (HAp), as the most representative bone component is a serious candidate for such implantations. The synthetic polymer poly-L-lactide (PLLA) in HAp/PLLA is often used as a polymeric material, with a role in the substitution of bone tissue collagen fibers. Fibers of PLLA may strengthen HAp and its good bioresorption provides space for tissue remodeling. Differences in porosity, microstructure, compressive consistency as well as bioresorbility of HAp/ PLLA may be achieved by using PLLA with different molecular weights. In this study HAp/PLLA composites with PLLA of different molecular weights (50,000; 160,000 and 430,000) were implanted in mouse peritoneum in order to examine the influence of the molecular weight of PLLA on morphology changes. Microstructural changes of biomaterial (HAp/PLLA) surface were analyzed one week, three weeks and four months after their implantation using Scanning Electron Microscopy. The results showed a significant difference in tissue reactions on the applied biocomposites, depending on their molecular weight. The most intense proliferation of cells was induced by HAp/PLLA 50,000 compared to HAp/PLLA 430,000 and HAp/PLLA 160,000. In the vicinity of HAp/PLLA 430,000 abundant erythrocytes were observed. The differences in biological reactions on the examined biocomposites are significant for their practical applications. HAp/PLLA composite biomaterials of different types and resorption rates require specific designing and programming to become suitable for particular purposes in an organism.


2018 ◽  
Vol 226 ◽  
pp. 03012
Author(s):  
Elizaveta A. Mukhanova ◽  
Inna A. Suprunova ◽  
Yana A. Suprunova ◽  
Igor Yu. Zabiyaka

In this work, we study the influence of various molecular weights of polyvinylpyrrolidone (PVP) on synthesis substituted hydroxyapatite. Using the scanning electron microscopy we estimated the size and morphology of the particle. We studied the structural transformations of phosphates and the effect of polymer sizes on the structure and morphology. We revealed the thermodynamic stability of the structure of hydroxyapatite due to experimental results.


2009 ◽  
Vol 62 (11) ◽  
pp. 1473 ◽  
Author(s):  
Robert Rotzoll ◽  
Philipp Vana

The present study introduces the silica-anchored azo-initiator 4,4′-azobis(4-cyano-N-(3″-triethoxysilylpropyl)-valeric amide) (ACTA) for the surface-initiated polymerization of methyl acrylate (MA) with and without additional grafted reversible addition–fragmentation chain transfer (RAFT) agents 1,4-bis(3′-trimethoxysilylpropyltrithiocarbonylmethyl)benzene and 1,6-bis(o,p-2′-trimethoxysilylethylbenzyltrithiocarbonyl)hexane. While the sole use of silica-linked ACTA produced grafted poly(methyl acrylate) (pMA) of high molecular weight, due to a 2D Trommsdorff effect, the polymerization in combination with the fixed RAFT agents exhibited living behaviour with increasing molecular weights during polymerization. Silica-pMA hybrids were further analyzed via thermogravimetric analysis and scanning electron microscopy, which revealed significant differences between the three approaches.


2011 ◽  
Vol 306-307 ◽  
pp. 297-300
Author(s):  
Yu He ◽  
Wen Juan Guo ◽  
Guang You Zhang ◽  
Mei Shan Pei ◽  
Qi Wei Pan

Poly(N-(9-fluorenylmethoxycarbony)-glycine) (PFG) film was first synthesized on platinum wire by direct anodic oxidation of N-(9-fluorenylmethoxycarbony)-glycine (FG) in boron trifluoride diethyl etherate (BFEE). The oxidation potential of FG in BFEE was only 0.4 V vs. Pt. Therefore, BFEE can be an ideal supporting electrolyte for polymerization of FG. Scanning electron microscopy showed the morphology of PFG. The structure of PFG film was studied by FT-IR spectroscopy.


2013 ◽  
Vol 821-822 ◽  
pp. 630-633
Author(s):  
Xiao Xia He ◽  
Sen Liu

The structure and dyeing properties of the untreated, oxidized, chitosan treated cotton fabric were studied. Due to the deposition of chitosan particles, the cotton surface appeare to be uneven in comparison with that of untreated one as seen from the scanning electron microscopy (SEM); the FT-IR indicate the physical attachment of chitosan to the cotton fabric; high dye exhaustion and color yields (K/S) could be achieved on the chitosan treated cotton than that on the untreated one; with higher molecular-weight of the chitosan, the dyeability mentioned above are superior to that with lower molecular-weight.


Sign in / Sign up

Export Citation Format

Share Document