scholarly journals A Mathematical Framework for Interpreting Playing Environments as Media for Information Flow

2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Tatsuo Motoyoshi ◽  
Takashi Hattori ◽  
Hiroshi Kawakami ◽  
Takayuki Shiose ◽  
Osamu Katai

This paper proposes a novel strategy of designing play equipments. The strategy introduces two loose constraints as a guideline for designers. The first constraint is “describing unit of play action chain_ based on Barthes_ semiology, and the second is the infomorphism between designer, play equipment, and players based on channel theory. We provide detailed explanation of the strategy through an example of a designing process of playing environment where the players usage of the play equipment cannot be foreseen.

2021 ◽  
Vol 18 (1) ◽  
pp. 1-24
Author(s):  
Andrew Tedder

Situation theory, and channel theory in particular, have been used to provide motivational accounts of the ternary relation semantics of relevant, substructural, and various non-classical logics. Among the constraints imposed by channel-theory, we must posit a certain existence criterion for situations which result from the composites of multiple channels (this is used in modeling information flow). In associative non-classical logics, it is relatively easy to show that a certain such condition is met, but the problem is trickier in non-associative logics. Following Tedder (2017), where it was shown that the conjunction-conditional fragment of the logic B admits the existence of composite channels, I present a generalised ver- sion of the previous argument, appropriate to logics with disjunction, in the neighbourhood ternary relation semantic framework. I close by suggesting that the logic BB+(^I), which falls between Lavers' system BB+ and B+ , satisfies the conditions for the general argument to go through (and prove that it satisfies all but one of those conditions).


Author(s):  
Charles Telles

Article link: https://www.mdpi.com/2073-8994/10/11/645 How parameters such as interaction, iteration, frequency of iteration and time can express in a simple manner a nonlinear dynamics? Considering a system with stationary PDF and ergodic properties, the mathematical framework reveals a constant oscillation of information flow in the system. Those parameters mentioned before can start chaotic process in the previous system generating infinite random sequences as Per Martin-Löf suggested in his work "Complexity oscillations in infinite binary sequences". In this way the non ergodic properties of system express observable oscillations in which time lengths regulations can be used as a tool for PDF constraint and  phase space formations.


2018 ◽  
Vol 41 ◽  
Author(s):  
David Danks

AbstractThe target article uses a mathematical framework derived from Bayesian decision making to demonstrate suboptimal decision making but then attributes psychological reality to the framework components. Rahnev & Denison's (R&D) positive proposal thus risks ignoring plausible psychological theories that could implement complex perceptual decision making. We must be careful not to slide from success with an analytical tool to the reality of the tool components.


Author(s):  
J.S. Bow ◽  
R.W. Carpenter ◽  
M.J. Kim

A prominent characteristic of high-resolution images of 6H-SiC viewed from [110] is a zigzag shape with a period of 6 layers as shown in Fig.1. Sometimes the contrast is same through the 6 layers of (0006) planes (Fig.1a), but in most cases it appears as in Fig.1b -- alternate bright/dark contrast among every three (0006) planes. Alternate bright/dark contrast is most common for the thicker specimens. The SAD patterns of these two types of image are almost same, and there is no indication that the difference results from compositional ordering. O’Keefe et al. concluded this type of alternate contrast was due to crystal tilt in thick parts of the specimen. However, no detailed explanation was given. Images of similar character from Ti3Al, which is also a hexagonal crystal, were reported by Howe et al. Howe attributed the bright/dark contrast among alternate (0002) Ti3Al planes to phase shifts produced by incident beam tilt.


2019 ◽  
Vol 3 (1) ◽  
pp. 97-105
Author(s):  
Mary Zuccato ◽  
Dustin Shilling ◽  
David C. Fajgenbaum

Abstract There are ∼7000 rare diseases affecting 30 000 000 individuals in the U.S.A. 95% of these rare diseases do not have a single Food and Drug Administration-approved therapy. Relatively, limited progress has been made to develop new or repurpose existing therapies for these disorders, in part because traditional funding models are not as effective when applied to rare diseases. Due to the suboptimal research infrastructure and treatment options for Castleman disease, the Castleman Disease Collaborative Network (CDCN), founded in 2012, spearheaded a novel strategy for advancing biomedical research, the ‘Collaborative Network Approach’. At its heart, the Collaborative Network Approach leverages and integrates the entire community of stakeholders — patients, physicians and researchers — to identify and prioritize high-impact research questions. It then recruits the most qualified researchers to conduct these studies. In parallel, patients are empowered to fight back by supporting research through fundraising and providing their biospecimens and clinical data. This approach democratizes research, allowing the entire community to identify the most clinically relevant and pressing questions; any idea can be translated into a study rather than limiting research to the ideas proposed by researchers in grant applications. Preliminary results from the CDCN and other organizations that have followed its Collaborative Network Approach suggest that this model is generalizable across rare diseases.


Author(s):  
Taddese Mekonnen Ambay ◽  
Philipp Schick ◽  
Michael Grimm ◽  
Maximilian Sager ◽  
Felix Schneider ◽  
...  

2020 ◽  
Author(s):  
Ana Beloqui ◽  
Francesco Suriano ◽  
Matthias Hul ◽  
Yining Xu ◽  
Véronique Préat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document