Origin of the alternate bright/dark contrast in HREM images of hexagonal crystals, particularly 6H-SiC

Author(s):  
J.S. Bow ◽  
R.W. Carpenter ◽  
M.J. Kim

A prominent characteristic of high-resolution images of 6H-SiC viewed from [110] is a zigzag shape with a period of 6 layers as shown in Fig.1. Sometimes the contrast is same through the 6 layers of (0006) planes (Fig.1a), but in most cases it appears as in Fig.1b -- alternate bright/dark contrast among every three (0006) planes. Alternate bright/dark contrast is most common for the thicker specimens. The SAD patterns of these two types of image are almost same, and there is no indication that the difference results from compositional ordering. O’Keefe et al. concluded this type of alternate contrast was due to crystal tilt in thick parts of the specimen. However, no detailed explanation was given. Images of similar character from Ti3Al, which is also a hexagonal crystal, were reported by Howe et al. Howe attributed the bright/dark contrast among alternate (0002) Ti3Al planes to phase shifts produced by incident beam tilt.

Author(s):  
Etienne de Harven

Biological ultrastructures have been extensively studied with the scanning electron microscope (SEM) for the past 12 years mainly because this instrument offers accurate and reproducible high resolution images of cell shapes, provided the cells are dried in ways which will spare them the damage which would be caused by air drying. This can be achieved by several techniques among which the critical point drying technique of T. Anderson has been, by far, the most reproducibly successful. Many biologists, however, have been interpreting SEM micrographs in terms of an exclusive secondary electron imaging (SEI) process in which the resolution is primarily limited by the spot size of the primary incident beam. in fact, this is not the case since it appears that high resolution, even on uncoated samples, is probably compromised by the emission of secondary electrons of much more complex origin.When an incident primary electron beam interacts with the surface of most biological samples, a large percentage of the electrons penetrate below the surface of the exposed cells.


Author(s):  
T. Miyokawa ◽  
H. Kazumori ◽  
S. Nakagawa ◽  
C. Nielsen

We have developed a strongly excited objective lens with a built-in secondary electron detector to provide ultra-high resolution images with high quality at low to medium accelerating voltages. The JSM-6320F is a scanning electron microscope (FE-SEM) equipped with this lens and an incident beam divergence angle control lens (ACL).The objective lens is so strongly excited as to have peak axial Magnetic flux density near the specimen surface (Fig. 1). Since the speciien is located below the objective lens, a large speciien can be accomodated. The working distance (WD) with respect to the accelerating voltage is limited due to the magnetic saturation of the lens (Fig.2). The aberrations of this lens are much smaller than those of a conventional one. The spherical aberration coefficient (Cs) is approximately 1/20 and the chromatic aberration coefficient (Cc) is 1/10. for accelerating voltages below 5kV. At the medium range of accelerating voltages (5∼15kV). Cs is 1/10 and Cc is 1/7. Typical values are Cs-1.lmm. Cc=l. 5mm at WD=2mm. and Cs=3.lmm. Cc=2.9 mm at WD=5mm. This makes the lens ideal for taking ultra-high resolution images at low to medium accelerating voltages.


2019 ◽  
Vol 19 (1) ◽  
pp. 1-8
Author(s):  
S. Mantey

Cadastral surveys in Ghana often employ well known surveying equipment such as Total Station andGNSSreceivers or a combination of both. These survey techniques are well-established and widely accepted. However, there are limitations in certain areas. In situations where difficult terrain and inaccessible areas and dense vegetation are encountered or when surveyor’s life may be at risk, Unmanned Aerial Vehicles (UAVs) could be used to overcome the limitations of these well-established survey instruments. This research used high resolution images from UAV (DJI Phantom 4) to survey plots within the University of Mines and Technology land area. Coordinates of the boundary points were extracted using Agisoft Photoscan.GNSSreceivers were also used to survey the land and the same boundary point coordinates obtained and compared. This enabled the establishment of accurate ground control points for georeferencing. The coordinates obtained from both UAV andGNSSSurveys were used to prepare cadastral plans and compared. The difference in Northings and Eastings from UAV andGNSSsurveys were +0.380 cmand +0.351 cmrespectively. These differences are well within tolerance of +/-0.9114 m(+/-3 ft) set by the Survey and Mapping Division (SMD) of the Lands Commission for cadastral plans production. This research therefore concludes that high resolution images from UAVs are suitable for cadastral surveying. Keywords: Unmanned Aerial Vehicles, Drones, Global Navigation Satellite Systems, Cadastral Surveys


Author(s):  
J.M. Gibson

When an electron microscopist takes a high resolution image of an amorphous object, perhaps he has something in common with a pianist who tackles a complex atonal sonata. Both efforts could represent a pinnacle of achievement for the performer and his instrument but the pianist's audience may not immediately recognize the difference if a monkey were to walk over the keys. To stretch the analogy, a perfect lattice image could be equated to a faultless rendition of a Haydn Sonata: aesthetically satisfying but predictable. One conclusion from a decade's work on the subject (see a recent review by Howie) is that high resolution images from amorphous samples are not easily interpreted directly. One can learn more about the atomic arrangement in amorphous materials from such images if one treats them rather as quantitative information about the local scattering properties than pictures.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Author(s):  
M. Kelly ◽  
D.M. Bird

It is well known that strain fields can have a strong influence on the details of HREM images. This, for example, can cause problems in the analysis of edge-on interfaces between lattice mismatched materials. An interesting alternative to conventional HREM imaging has recently been advanced by Pennycook and co-workers where the intensity variation in the annular dark field (ADF) detector is monitored as a STEM probe is scanned across the specimen. It is believed that the observed atomic-resolution contrast is correlated with the intensity of the STEM probe at the atomic sites and the way in which this varies as the probe moves from cell to cell. As well as providing a directly interpretable high-resolution image, there are reasons for believing that ADF-STEM images may be less suseptible to strain than conventional HREM. This is because HREM images arise from the interference of several diffracted beams, each of which is governed by all the excited Bloch waves in the crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


Sign in / Sign up

Export Citation Format

Share Document