scholarly journals Vertical MEMS Resonators for Real-Time Clock Applications

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
A. Pomarico ◽  
A. Morea ◽  
P. Flora ◽  
G. Roselli ◽  
E. Lasalandra

MEMS resonators are today widely investigated as a desirable alternative to quartz resonators in real-time clock applications, because of their low-cost, integration capability properties. Nevertheless, MEMS resonators performances are still not competitive, especially in terms of frequency stability and device equivalent resistance (and, then, power consumption). We propose a new structure for a MEMS resonator, with a vertical-like transduction mechanism, which exhibits promising features. The vertical resonator can be fabricated with the low-cost, high performance THELMA technology, and it is designed to be efficiently frequency tunable. With respect to the commonly investigated lateral resonators, it is expected to have lower equivalent resistances and improved large-scale repeatability characteristics.

2018 ◽  
Vol 7 (12) ◽  
pp. 467 ◽  
Author(s):  
Mengyu Ma ◽  
Ye Wu ◽  
Wenze Luo ◽  
Luo Chen ◽  
Jun Li ◽  
...  

Buffer analysis, a fundamental function in a geographic information system (GIS), identifies areas by the surrounding geographic features within a given distance. Real-time buffer analysis for large-scale spatial data remains a challenging problem since the computational scales of conventional data-oriented methods expand rapidly with increasing data volume. In this paper, we introduce HiBuffer, a visualization-oriented model for real-time buffer analysis. An efficient buffer generation method is proposed which introduces spatial indexes and a corresponding query strategy. Buffer results are organized into a tile-pyramid structure to enable stepless zooming. Moreover, a fully optimized hybrid parallel processing architecture is proposed for the real-time buffer analysis of large-scale spatial data. Experiments using real-world datasets show that our approach can reduce computation time by up to several orders of magnitude while preserving superior visualization effects. Additional experiments were conducted to analyze the influence of spatial data density, buffer radius, and request rate on HiBuffer performance, and the results demonstrate the adaptability and stability of HiBuffer. The parallel scalability of HiBuffer was also tested, showing that HiBuffer achieves high performance of parallel acceleration. Experimental results verify that HiBuffer is capable of handling 10-million-scale data.


2019 ◽  
Vol 16 (3) ◽  
pp. 117-123
Author(s):  
Tsung-Ching Huang ◽  
Ting Lei ◽  
Leilai Shao ◽  
Sridhar Sivapurapu ◽  
Madhavan Swaminathan ◽  
...  

Abstract High-performance low-cost flexible hybrid electronics (FHE) are desirable for applications such as internet of things and wearable electronics. Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for high-performance FHE because of its high carrier mobility, superior mechanical flexibility, and material compatibility with low-cost printing and solution processes. Flexible sensors and peripheral CNT-TFT circuits, such as decoders, drivers, and sense amplifiers, can be printed and hybrid-integrated with thinned (<50 μm) silicon chips on soft, thin, and flexible substrates for a wide range of applications, from flexible displays to wearable medical devices. Here, we report (1) a process design kit (PDK) to enable FHE design automation for large-scale FHE circuits and (2) solution process-proven intellectual property blocks for TFT circuits design, including Pseudo-Complementary Metal-Oxide-Semiconductor (Pseudo-CMOS) flexible digital logic and analog amplifiers. The FHE-PDK is fully compatible with popular silicon design tools for design and simulation of hybrid-integrated flexible circuits.


Author(s):  
Guixiang Wang ◽  
Haitao Zou ◽  
Xiaobo Zhu ◽  
Mei Ding ◽  
Chuankun Jia

Abstract Zinc-based redox flow batteries (ZRFBs) have been considered as ones of the most promising large-scale energy storage technologies owing to their low cost, high safety, and environmental friendliness. However, their commercial application is still hindered by a few key problems. First, the hydrogen evolution and zinc dendrite formation cause poor cycling life, of which needs to ameliorated or overcome by finding suitable anolytes. Second, the stability and energy density of catholytes are unsatisfactory due to oxidation, corrosion, and low electrolyte concentration. Meanwhile, highly catalytic electrode materials remain to be explored and the ion selectivity and cost efficiency of membrane materials demands further improvement. In this review, we summarize different types of ZRFBs according to their electrolyte environments including ZRFBs using neutral, acidic, and alkaline electrolytes, then highlight the advances of key materials including electrode and membrane materials for ZRFBs, and finally discuss the challenges and perspectives for the future development of high-performance ZRFBs.


2021 ◽  
Author(s):  
Nicholas Parkyn

Emerging heterogeneous computing, computing at the edge, machine learning and AI at the edge technology drives approaches and techniques for processing and analysing onboard instrument data in near real-time. The author has used edge computing and neural networks combined with high performance heterogeneous computing platforms to accelerate AI workloads. Heterogeneous computing hardware used is readily available, low cost, delivers impressive AI performance and can run multiple neural networks in parallel. Collecting, processing and machine learning from onboard instruments data in near real-time is not a trivial problem due to data volumes, complexities of data filtering, data storage and continual learning. Little research has been done on continual machine learning which aims at a higher level of machine intelligence through providing the artificial agents with the ability to learn from a non-stationary and never-ending stream of data. The author has applied the concept of continual learning to building a system that continually learns from actual boat performance and refines predictions previously done using static VPP data. The neural networks used are initially trained using the output from traditional VPP software and continue to learn from actual data collected under real sailing conditions. The author will present the system design, AI, and edge computing techniques used and the approaches he has researched for incremental training to realise continual learning.


NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050062
Author(s):  
Zhaolei Meng ◽  
Xiaojian He ◽  
Song Han ◽  
Zijian Hu

Carbon materials are generally employed as supercapacitor electrodes due to their low- cost, high-chemical stability and environmental friendliness. However, the design of carbon structures with large surface area and controllable porous structure remains a daunt challenge. In this work, a three-dimensional (3D) hybrid aerogel with different contents of MoS2 nanosheets in 3D graphene aerogel (MoS2-GA) was synthesized through a facial hydrothermal process. The influences of MoS2 content on microstructure and subsequently on electrochemical properties of MoS2-GA are systematically investigated and an optimized mass ratio with MoS2: GA of 1:2 is chosen to achieve high mechanical robustness and outstanding electrochemical performance in the hybrid structure. Due to the large specific surface area, porous structure and continuous charge transfer network, such MoS2-GA electrodes exhibit high specific capacitance, good rate capability and excellent cyclic stability, showing great potential in large-scale and low-cost fabrication of high-performance supercapacitors.


2020 ◽  
Vol 9 (3) ◽  
pp. 44
Author(s):  
Leonor Varandas ◽  
João Faria ◽  
Pedro Gaspar ◽  
Martim Aguiar

Population growth and climate change lead agricultural cultures to face environmental degradation and rising of resistant diseases and pests. These conditions result in reduced product quality and increasing risk of harmful toxicity to human health. Thus, the prediction of the occurrence of diseases and pests and the consequent avoidance of the erroneous use of phytosanitary products will contribute to improving food quality and safety and environmental land protection. This study presents the design and construction of a low-cost IoT sensor mesh that enables the remote measurement of parameters of large-scale orchards. The developed remote monitoring system transmits all monitored data to a central node via LoRaWAN technology. To make the system nodes fully autonomous, the individual nodes were designed to be solar-powered and to require low energy consumption. To improve the user experience, a web interface and a mobile application were developed, which allow the monitored information to be viewed in real-time. Several experimental tests were performed in an olive orchard under different environmental conditions. The results indicate an adequate precision and reliability of the system and show that the system is fully adequate to be placed in remote orchards located at a considerable distance from networks, being able to provide real-time parameters monitoring of both tree and the surrounding environment.


2018 ◽  
Vol 217 ◽  
pp. 291-299 ◽  
Author(s):  
Yingyuan Zhao ◽  
Nian Jiang ◽  
Xu Zhang ◽  
Jing Guo ◽  
Yanqiang Li ◽  
...  

2019 ◽  
Vol 72 (04) ◽  
pp. 917-930
Author(s):  
Fang-Shii Ning ◽  
Xiaolin Meng ◽  
Yi-Ting Wang

Connected and Autonomous Vehicles (CAVs) have been researched extensively for solving traffic issues and for realising the concept of an intelligent transport system. A well-developed positioning system is critical for CAVs to achieve these aims. The system should provide high accuracy, mobility, continuity, flexibility and scalability. However, high-performance equipment is too expensive for the commercial use of CAVs; therefore, the use of a low-cost Global Navigation Satellite System (GNSS) receiver to achieve real-time, high-accuracy and ubiquitous positioning performance will be a future trend. This research used RTKLIB software to develop a low-cost GNSS receiver positioning system and assessed the developed positioning system according to the requirements of CAV applications. Kinematic tests were conducted to evaluate the positioning performance of the low-cost receiver in a CAV driving environment based on the accuracy requirements of CAVs. The results showed that the low-cost receiver satisfied the “Where in Lane” accuracy level (0·5 m) and achieved a similar positioning performance in rural, interurban, urban and motorway areas.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


Sign in / Sign up

Export Citation Format

Share Document