scholarly journals Performance and Implementation Evaluation of TR PAPR Reduction Methods for DVB-T2

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamad Mroué ◽  
Amor Nafkha ◽  
Jacques Palicot ◽  
Benjamin Gavalda ◽  
Nelly Dagorne

High Peak to Average Power Ratio (PAPR) is a critical issue in multicarrier communication systems using Orthogonal Frequency Division Multiplexing (OFDM), as in the Second Generation Terrestrial Digital Video Broadcasting (DVB-T2) system. This problem can result in large performance degradation due to the nonlinearity of the High Power Amplifier (HPA) or in its low power efficiency. In this paper, we evaluate the performance of different Tone Reservation-based techniques for PAPR reduction in DVB-T2 context. Also, we propose an iterative TR-based technique called “One Kernel One Peak” (OKOP). Simulation results and performance comparison of these techniques in terms of gain in PAPR reduction, mean power variation, and complexity will be given. Finally, we describe the implementation of a PAPR reduction algorithm in the DVB-T2 modulator.

2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Rui J. P. de Figueiredo ◽  
Lin Fang ◽  
Byung Moo Lee

Orthogonal frequency division multiplexing (OFDM) is a powerful modulation choice for wideband wireless communication systems. However, its high peak-to-average power ratio greatly limits the high power amplifier (HPA) power efficiency. Here, we present the design of an adaptive predistorter to compensate the distortion caused by the HPA. Specifically, we deal with the implementation issue of the proposed predistorter in Lee and de Figueiredo's work (2006). The performance improvement by predistorter is verified by both floating-point simulation and fixed-point simulation, where the latter includes the distortion effects from the hardware. The bit widths for OFDM signals, ADC, and DAC are evaluated, and the bit width of 10 is shown to be sufficient for the hardware design.


Author(s):  
Shatrughna Prasad Yadav ◽  
Subhash Chandra Bera

<p>Highly linear power amplifiers are required for transferring   large amount of data for future communication. Orthogonal frequency division multiplexing (OFDM) provides high data rate transmission capability with robustness to radio channel impairments. It has been widely accepted for future communication for different services. But, it suffers from high value of peak-to-average power ratio (PAPR). High value of PAPR drives high power amplifier into its saturation region and causes it to operate in the nonlinear region.  In this paper, comparative study of four different PAPR reduction techniques: clipping and filtering (CF), selective mapping  method (SLM), partial transmit sequence (PTS) and DFT- spread technique  have been done. Mathematical modeling and Matlab simulations have been performed to arrive at the results with 4 QAM modulation format and 1024 number of sub carriers. At 0.01 % of complementary cumulative distribution function (CCDF) significant reduction of 11.3, 3.5, 3.4 and 1.0 dB have been obtained with DFT- spread, SLM, PTS and CF techniques respectively.</p>


2019 ◽  
Vol 9 (5) ◽  
pp. 852 ◽  
Author(s):  
Lili Hao ◽  
Dongyi Wang ◽  
Yang Tao ◽  
Wenyong Cheng ◽  
Jing Li ◽  
...  

End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.


Author(s):  
Shatrughna Prasad Yadav ◽  
Subhash Chandra Bera

<p>Highly linear power amplifiers are required for transferring   large amount of data for future communication. Orthogonal frequency division multiplexing (OFDM) provides high data rate transmission capability with robustness to radio channel impairments. It has been widely accepted for future communication for different services. But, it suffers from high value of peak-to-average power ratio (PAPR). High value of PAPR drives high power amplifier into its saturation region and causes it to operate in the nonlinear region.  In this paper, comparative study of four different PAPR reduction techniques: clipping and filtering (CF), selective mapping  method (SLM), partial transmit sequence (PTS) and DFT- spread technique  have been done. Mathematical modeling and Matlab simulations have been performed to arrive at the results with 4 QAM modulation format and 1024 number of sub carriers. At 0.01 % of complementary cumulative distribution function (CCDF) significant reduction of 11.3, 3.5, 3.4 and 1.0 dB have been obtained with DFT- spread, SLM, PTS and CF techniques respectively.</p>


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 116 ◽  
Author(s):  
Abdelhamid Louliej ◽  
Younes Jabrane ◽  
Víctor P. Gil Jiménez ◽  
Ana García Armada

Nowadays, the sensor community has become wireless, increasing their potential and applications. In particular, these emerging technologies are promising for vehicles’ communications (V2V) to dramatically reduce the number of fatal roadway accidents by providing early warnings. The ECMA-368 wireless communication standard has been developed and used in wireless sensor networks and it is also proposed to be used in vehicular networks. It adopts Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) technology to transmit data. However, the large power envelope fluctuation of OFDM signals limits the power efficiency of the High Power Amplifier (HPA) due to nonlinear distortion. This is especially important for mobile broadband wireless and sensors in vehicular networks. Many algorithms have been proposed for solving this drawback. However, complexity and implementations are usually an issue in real developments. In this paper, the implementation of a novel architecture based on multilayer perceptron artificial neural networks on a Field Programmable Gate Array (FPGA) chip is evaluated and some guidelines are drawn suitable for vehicular communications. The proposed implementation improves performance in terms of Peak to Average Power Ratio (PAPR) reduction, distortion and Bit Error Rate (BER) with much lower complexity. Two different chips have been used, namely, Xilinx and Altera and a comparison is also provided. As a conclusion, the proposed implementation allows a minimal consumption of the resources jointly with a higher maximum frequency, higher performance and lower complexity.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1410
Author(s):  
Mohamed Mounir ◽  
Mohamed B. El_Mashade ◽  
Salah Berra ◽  
Gurjot Singh Gaba ◽  
Mehedi Masud

Several high-speed wireless systems use Orthogonal Frequency Division Multiplexing (OFDM) due to its advantages. 5G has adopted OFDM and is expected to be considered beyond 5G (B5G). Meanwhile, OFDM has a high Peak-to-Average Power Ratio (PAPR) problem. Hybridization between two PAPR reduction techniques gains the two techniques’ advantages. Hybrid precoding-companding techniques are attractive as they require small computational complexity to achieve high PAPR reduction gain. Many precoding-companding techniques were introduced to increasing the PAPR reduction gain. However, reducing Bit Error Rate (BER) and out-of-band (OOB) radiation are more significant than increasing PAPR reduction gain. This paper proposes a new precoding-companding technique to better reduce the BER and OOB radiation than previous precoding-companding techniques. Results showed that the proposed technique outperforms all previous precoding-companding techniques in BER enhancement and OOB radiation reduction. The proposed technique reduces the Error Vector Magnitude (EVM) by 15 dB compared with 10 dB for the best previous technique. Additionally, the proposed technique increases high power amplifier efficiency (HPA) by 11.4%, while the best previous technique increased HPA efficiency by 9.8%. Moreover, our proposal achieves PAPR reduction gain better than the most known powerful PAPR reduction technique with a 99% reduction in required computational complexity.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 190 ◽  
Author(s):  
Brahim Bakkas ◽  
Reda Benkhouya ◽  
Idriss Chana ◽  
Hussain Ben-Azza

Orthogonal frequency division multiplexing (OFDM) is the key technology used in high-speed communication systems. One of the major drawbacks of OFDM systems is the high peak-to-average power ratio (PAPR) of the transmitted signal. The transmitted signal with a high PAPR requires a very large linear range of the Power Amplifier (PA) on the transmitter side. In this paper, we propose and study a new clipping method named Palm Clipping (Palm date leaf) based on hyperbolic cosine. To evaluate and analyze its performance in terms of the PAPR and Bit Error Rate (BER), we performed some computer simulations by varying the Clipping Ratio (CR) and modulation schemes. The obtained results show that it is possible to achieve a gain of between 7 and 9 dB in terms of PAPR reduction depending on the type of modulation. In addition, comparison with several techniques in terms of PAPR and BER shows that our method is a strong alternative that can be adopted as a PAPR reduction technique for OFDM-based communication systems.


2021 ◽  
Vol 25 (5) ◽  
pp. 85-94
Author(s):  
Noor Q. Lateef ◽  
◽  
Fadhil S. Hasan ◽  

One of the major disadvantages of Filter Bank Multicarrier (FBMC) is high Peak-to-Average Power Ratio (PAPR) of transmitted signal. As a result, nonlinear power amplifier (PA) properties, considerable out-of-band and the in-band distortion types take place in the case where the signals of high peak exceed the PA saturation level. In the present study, a new method of the PAPR reduction is presented and applied to reduce PAPR in FBMC/OQAM system. Different clipping methods have been proposed and studied that are Amplitude Clipping (AC), Palm Clipping (PC), Deep Clipping (DC), and smooth Clipping (SC) for the reduction of PAPR. To evaluate and analyze the performance of PAPR reduction methods, PAPR and Bit Error Rate (BER) measures are used and programmed using MATLAB program. The simulation results show that the clipping methods are strong substitute methods which may be assumed as a method of PAPR reduction for the FBMC-based communication systems and AC appears to be the best method.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1708
Author(s):  
Ahmad Gendia ◽  
Osamu Muta

Peak-to-average power ratio (PAPR) reduction in multiplexed signals in orthogonal frequency division multiplexing (OFDM) systems has been a long-standing critical issue. Clipping and filtering (CF) techniques offer good performance in terms of PAPR reduction at the expense of a relatively high computational cost that is inherent in the repeated application of fast Fourier transform (FFT) operations. The ever-increasing demand for low-latency operation calls for the development of low-complexity novel solutions to the PAPR problem. To address this issue while providing an enhanced PAPR reduction performance, we propose a synchronous neural network (NN)-based solution to achieve PAPR reduction performance exceeding the limits of conventional CF schemes with lower computational complexity. The proposed scheme trains a neural network module using hybrid collections of samples from multiple OFDM symbols to arrive at a signal mapping with desirable characteristics. The benchmark NN-based approach provides a comparable performance to conventional CF. However, it can underfit or overfit due to its asynchronous nature which leads to increased out-of-band (OoB) radiations, and deteriorating bit error rate (BER) performance for high-order modulations. Simulations’ results demonstrate the effectiveness of the proposed scheme in terms of the achieved cubic metric (CM), BER, and OoB emissions.


Author(s):  
Frank Andrés Eras ◽  
Italo Alexander Carreño ◽  
Thomás Borja ◽  
Diego Javier Reinoso ◽  
Luis Urquiza-Aguiar ◽  
...  

Orthogonal Frequency Division Multiplexing (OFDM) is a technique widely used in today's wireless communication systems due to its ability to combat the effects of multi-path in the signal. However, one of the main limitations of the use of OFDM is its high Peak-to-Average Power Ratio (PAPR), which reduces the efficiency of the OFDM system. The effects of PAPR can produce both out-of-band and in-band radiation, which degrades the signal by increasing the bit error rate (BER), this occurs in both baseband and bandpass sginals. In this document the effect of the PAPR in a OFDM passband signal is analyzed considering the implementation of a High Power Amplifier (HPA) and the Simple Amplitude Predistortion-Orthogonal Pilot Sequences (OPS-SAP) scheme to reduce the PAPR.


Sign in / Sign up

Export Citation Format

Share Document