scholarly journals CLIPPING TECHNIQUES FOR PAPR REDUCTION IN FBMC/OQAM SYSTEM OVER DOUBLY-SELECTIVE CHANNELS

2021 ◽  
Vol 25 (5) ◽  
pp. 85-94
Author(s):  
Noor Q. Lateef ◽  
◽  
Fadhil S. Hasan ◽  

One of the major disadvantages of Filter Bank Multicarrier (FBMC) is high Peak-to-Average Power Ratio (PAPR) of transmitted signal. As a result, nonlinear power amplifier (PA) properties, considerable out-of-band and the in-band distortion types take place in the case where the signals of high peak exceed the PA saturation level. In the present study, a new method of the PAPR reduction is presented and applied to reduce PAPR in FBMC/OQAM system. Different clipping methods have been proposed and studied that are Amplitude Clipping (AC), Palm Clipping (PC), Deep Clipping (DC), and smooth Clipping (SC) for the reduction of PAPR. To evaluate and analyze the performance of PAPR reduction methods, PAPR and Bit Error Rate (BER) measures are used and programmed using MATLAB program. The simulation results show that the clipping methods are strong substitute methods which may be assumed as a method of PAPR reduction for the FBMC-based communication systems and AC appears to be the best method.

Information ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 246 ◽  
Author(s):  
Han Wang

The filter bank multicarrier employing offset quadrature amplitude modulation (FBMC/OQAM) is a candidate transmission scheme for 5G wireless communication systems. However, it has a high peak-to-average power ratio (PAPR). Due to the nature of overlapped signal structure of FBMC/OQAM, conventional PAPR reduction schemes cannot work effectively. A hybrid PAPR reduction scheme based on selective mapping (SLM) and multi data block partial transmit sequence (M-PTS) methods is proposed for FBMC/OQAM signals in this paper. Different from the simple SLM-PTS method, the proposed hybrid algorithm takes into account the overlapping effect of multiple adjacent data blocks on its PTS process. From simulation results, it can be obtained that the proposed method can offer a significant PAPR reduction performance improvement compared with the SLM, PTS and SLM-PTS methods. The proposed method can effectively reduce the PAPR in FBMC/OQAM systems.


2021 ◽  
Author(s):  
Srinivas Ramavath ◽  
Umesh Chandra Samal

Abstract In this paper, two new companders are designed to reduce the ratio of peak to average power (PAPR) experienced by filter bank multicarrier (FBMC) signals. Specifically, the compander basic model is generalized, which alter the distributed FBMC signal amplitude peak. The proposed companders design approach provides better performance in terms of reducing the PAPR, Bit Error Rate (BER) and phase error degradation over the previously existing compander schemes. Many PAPR reduction approaches, such as the µ-law companding technique, are also available. It results in the formation of spectrum side lobes, although the proposed techniques result in a spectrum with fewer side lobes. The theoretical analysis of linear compander and expander transform for a few specific parameters are derived and analyzed. The suggested linear companding technique is analytically analysed using simulations to show that it efficiently decreases the high peaks in the FBMC system.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Haitham F. Abdalla ◽  
Emad S. Hassan ◽  
Moawad I. Dessouky

AbstractFilter bank multicarrier (FBMC) is a new waveform candidate in the visible light communication system (VLC). FBMC is a particular sort of multi-carrier modulation that can be viewed as an option in contrast to orthogonal frequency division multicarrier (OFDM) with CP (cyclic prefix). The point is to defeat some innate disadvantages of the normally utilized optical OFDM schemes. The principles of key transceiver should be intended to suit the necessities of the channel of IM/DD. Peak to average power ratio (PAPR) and bit error rate (BER) performance of FBMC based VLC are discussed and compared with scheme of optical OFDM. FBMC based VLC system with clipping technique has the lowest PAPR and good BER performance compared to conventional system in this paper. This paper recommends that FBMC based VLC has an incredible potential for optical wireless communication systems with high-speed. Matlab program simulations confirm the analysis. The results may shed light into potential research line on FBMC based VLC systems.


2019 ◽  
Vol 9 (5) ◽  
pp. 852 ◽  
Author(s):  
Lili Hao ◽  
Dongyi Wang ◽  
Yang Tao ◽  
Wenyong Cheng ◽  
Jing Li ◽  
...  

End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamad Mroué ◽  
Amor Nafkha ◽  
Jacques Palicot ◽  
Benjamin Gavalda ◽  
Nelly Dagorne

High Peak to Average Power Ratio (PAPR) is a critical issue in multicarrier communication systems using Orthogonal Frequency Division Multiplexing (OFDM), as in the Second Generation Terrestrial Digital Video Broadcasting (DVB-T2) system. This problem can result in large performance degradation due to the nonlinearity of the High Power Amplifier (HPA) or in its low power efficiency. In this paper, we evaluate the performance of different Tone Reservation-based techniques for PAPR reduction in DVB-T2 context. Also, we propose an iterative TR-based technique called “One Kernel One Peak” (OKOP). Simulation results and performance comparison of these techniques in terms of gain in PAPR reduction, mean power variation, and complexity will be given. Finally, we describe the implementation of a PAPR reduction algorithm in the DVB-T2 modulator.


2021 ◽  
Vol 9 (17) ◽  
pp. 26-39
Author(s):  
Hugo Wladimir Iza Benítez ◽  
Diego Javier Reinoso Chisaguano

UFMC (Universal Filtered Multi-Carrier) is a novel multi-carrier transmission technique that aims to replace the OFDM (Orthogonal Frequency Division Multiplexing) modulation technique for fifth generation (5G) wireless communication systems. UFMC, being a generalization of OFDM and FBMC (Filter Bank Multicarrier), combines the advantages of these systems and at the same time avoids their main disadvantages. Using a Matlab simulation, this article presents an analysis of the robustness of UFMC against fading effects of multipath channels without using a CP (cyclic prefix). The behavior of the UFMC system is analyzed in terms of the PSD (Power Spectral Density), BER (Bit Error Rate) and MSE (Mean Square Error). The results show that UFMC reduces the out-band side lobes produced in the PSD of the processed signal. Also, it is shown that the pilot-assisted channel estimation method applied in OFDM systems can also be applied in UFMC systems.


Author(s):  
PRITANJALI KUMARI ◽  
US TRIAR

Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time ‘n’ in each sub blocks, known as “Hn”.Only those samples, having Hn greater than or equal to a preset threshold value (αT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 190 ◽  
Author(s):  
Brahim Bakkas ◽  
Reda Benkhouya ◽  
Idriss Chana ◽  
Hussain Ben-Azza

Orthogonal frequency division multiplexing (OFDM) is the key technology used in high-speed communication systems. One of the major drawbacks of OFDM systems is the high peak-to-average power ratio (PAPR) of the transmitted signal. The transmitted signal with a high PAPR requires a very large linear range of the Power Amplifier (PA) on the transmitter side. In this paper, we propose and study a new clipping method named Palm Clipping (Palm date leaf) based on hyperbolic cosine. To evaluate and analyze its performance in terms of the PAPR and Bit Error Rate (BER), we performed some computer simulations by varying the Clipping Ratio (CR) and modulation schemes. The obtained results show that it is possible to achieve a gain of between 7 and 9 dB in terms of PAPR reduction depending on the type of modulation. In addition, comparison with several techniques in terms of PAPR and BER shows that our method is a strong alternative that can be adopted as a PAPR reduction technique for OFDM-based communication systems.


Sign in / Sign up

Export Citation Format

Share Document