scholarly journals Coral Bleaching Susceptibility Is Decreased following Short-Term (1–3 Year) Prior Temperature Exposure and Evolutionary History

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Joshua A. Haslun ◽  
Kevin B. Strychar ◽  
Gregory Buck ◽  
Paul W. Sammarco

Coral exposed to short periods of temperature stress (≥1.0°C above mean monthly maximum) and/or increased frequencies of high temperatures may bolster resilience to global warming associated with climate change. We comparedMontastraea cavernosa(Linnaeus, 1767; Cnidaria, Scleractinia, Faviidae) from the Florida Keys National Marine Sanctuary (FKNMS) and the Flower Garden Banks National Marine Sanctuary (FGBNMS). Thermal stress has been reported frequently within the FKNMS; however, corals in the FGBNMS experience nominal exposures to similar stressors. Corals were exposed to three temperatures (27°C, 31°C, and 35°C) for 72 h. Colonies from the FKNMS lost significantly fewer viable and necrotic zooxanthellae under conditions of acute stress (35°C) than the FGBNMS colonies. This indicates that the FKNMS corals are less temperature-sensitive than those in the FGBNMS. The observed differences point to greater prior temperature exposure and adaptation in the former versus the latter site when correlated to previous years of thermal exposure.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. J. H. Nati ◽  
M. B. S. Svendsen ◽  
S. Marras ◽  
S. S. Killen ◽  
J. F. Steffensen ◽  
...  

AbstractHow ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species’ latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


2021 ◽  
Vol 13 (3) ◽  
pp. 1580
Author(s):  
Peng Su ◽  
Anyu Zhang ◽  
Ran Wang ◽  
Jing’ai Wang ◽  
Yuan Gao ◽  
...  

Extreme temperature events, which are part of global climate change, are a growing threat to crop production, especially to such temperature-sensitive crops as rice. As a result, the traditional rice-growing areas are also likely to shift. The MaxEnt model was used for predicting the areas potentially suitable for rice in the short term (2016–2035) and in the medium term (2046–2065) and under two scenarios developed by the Intergovernmental Panel on Climate Change, namely representative concentration pathway (RCP) 4.5 (the intermediate scenario) and RCP 8.5 (sometimes referred to as the worst-case scenario). The predictions, on verification, were seen to be highly accurate: the AUC—area under the curve—value of the MaxEnt model was > 0.85. The model made the following predictions. (1) Areas highly suitable for rice crops will continue to be concentrated mainly in the current major rice-production areas, and areas only marginally suitable will be concentrated mainly in the rainforest region. (2) Overall, although the current pattern of the distribution of such areas would remain more or less unchanged, their extent will mainly decrease in the subtropics but increase in the tropics and in high-latitude regions. (3) The extent of such areas will decrease in the short term but increase in the medium term.


2020 ◽  
Vol 4 (1) ◽  
pp. 78
Author(s):  
Talent Ndlovu ◽  
Sylvain Charlebois

Studies have shown the impact of climate change on the ocean ecosystem and the fishing and aquaculture sectors. As global warming intensifies, this will impact communities and communities as the populations of some fish species decline or increase. Research on the impacts of climate change to fisheries will facilitate the development of policies, helping communities to adapt while ensuring resilience and sustainability of the sector(s). This paper assesses the short term and long-term impacts of climate change to the ocean ecosystem, the consequences to economies and communities that rely on fishing for food security. It begins with a review of peer reviewed literature, followed by an analysis of the current policies and ends with some recommendations for governments in the sustainability and management of the ecosystem in the future. Important to note is the impact of human generated hazards and how a more holistic approach to minimizing risks to the ocean ecosystem could resolve threats of food insecurity in future.


Author(s):  
J.J.H. Nati ◽  
M.B.S. Svendsen ◽  
S. Marras ◽  
S.S. Killen ◽  
J.F. Steffensen ◽  
...  

AbstractHow ectothermic animals will cope with global warming, especially more frequent and intense heatwaves, is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 marine and freshwater fish species, we found that intraspecific vsariation in upper thermal tolerance varies according to a species’ latitude and evolutionary history. Notably, freshwater tropical species have lower variation in tolerance than temperate species in the northern hemisphere, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2020 ◽  
Author(s):  
Alistair Soutter ◽  
René Mõttus

Although the scientific evidence of anthropogenic climate change continues to grow, public discourse still reflects a high level of scepticism and political polarisation towards anthropogenic climate change. In this study (N = 499) we attempted to replicate and expand upon an earlier finding that environmental terminology (“climate change” versus “global warming”) could partly explain political polarisation in environmental scepticism (Schuldt, Konrath, & Schwarz, 2011). Participants completed a series of online questionnaires assessing personality traits, political preferences, belief in environmental phenomenon, and various pro-environmental attitudes and behaviours. Those with a Conservative political orientation and/or party voting believed less in both climate change and global warming compared to those with a Liberal orientation and/or party voting. Furthermore, there was an interaction between continuously measured political orientation, but not party voting, and question wording on beliefs in environmental phenomena. Personality traits did not confound these effects. Furthermore, continuously measured political orientation was associated with pro-environmental attitudes, after controlling for personality traits, age, gender, area lived in, income, and education. The personality domains of Openness, and Conscientiousness, were consistently associated with pro-environmental attitudes and behaviours, whereas Agreeableness was associated with pro-environmental attitudes but not with behaviours. This study highlights the importance of examining personality traits and political preferences together and suggests ways in which policy interventions can best be optimised to account for these individual differences.


2009 ◽  
Vol 160 (7) ◽  
pp. 195-200
Author(s):  
Reto Hefti

In the mountainous canton Grisons, much visited by tourists, the forest has always had an important role to play. New challenges are now presenting themselves. The article goes more closely into two themes on the Grisons forestry agenda dominating in the next few years: the increased use of timber and climate change. With the increased demand for logs and the new sawmill in Domat/Ems new opportunities are offered to the canton for more intensive use of the raw material, wood. This depends on a reduction in production costs and a positive attitude of the population towards the greater use of wood. A series of measures from the Grisons Forestry Department should be of help here. The risk of damage to infrastructure is particularly high in a mountainous canton. The cantonal government of the Grisons has commissioned the Forestry Department to define the situation concerning the possible consequences of global warming on natural hazards and to propose measures which may be taken. The setting up of extensive measurement and information systems, the elaboration of intervention maps, the estimation of the danger potential in exposed areas outside the building zone and the maintenance of existing protective constructions through the creation of a protective constructions register, all form part of the government programme for 2009 to 2012. In the Grisons, forest owners and visitors will have to become accustomed to the fact that their forests must again produce more wood and that, on account of global warming, protective forests will become even more important than they already are today.


Author(s):  
William R. Thompson ◽  
Leila Zakhirova

In this final chapter, we conclude by recapitulating our argument and evidence. One goal of this work has been to improve our understanding of the patterns underlying the evolution of world politics over the past one thousand years. How did we get to where we are now? Where and when did the “modern” world begin? How did we shift from a primarily agrarian economy to a primarily industrial one? How did these changes shape world politics? A related goal was to examine more closely the factors that led to the most serious attempts by states to break free of agrarian constraints. We developed an interactive model of the factors that we thought were most likely to be significant. Finally, a third goal was to examine the linkages between the systemic leadership that emerged from these historical processes and the global warming crisis of the twenty-first century. Climate change means that the traditional energy platforms for system leadership—coal, petroleum, and natural gas—have become counterproductive. The ultimate irony is that we thought that the harnessing of carbon fuels made us invulnerable to climate fluctuations, while the exact opposite turns out to be true. The more carbon fuels are consumed, the greater the damage done to the atmosphere. In many respects, the competition for systemic leadership generated this problem. Yet it is unclear whether systemic leadership will be up to the task of resolving it.


Sign in / Sign up

Export Citation Format

Share Document