scholarly journals Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
C. L. Cao ◽  
C. G. Hu ◽  
L. Fang ◽  
S. X. Wang ◽  
Y. S. Tian ◽  
...  

The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nanotube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%–98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively. Moreover, the treated humidity sensors showed higher sensitivity and better stability. In addition, the response and recover properties, and stabilization of the humidity sensors are measured, and the humidity sensitive mechanisms of the sensors are analyzed. The humidity sensitivity of carbon nanotube thin films indicates it promise as a kind of humidity sensitive material.

2009 ◽  
Vol 165 (3) ◽  
pp. 135-138 ◽  
Author(s):  
Zdenko Špitalský ◽  
Christos Aggelopoulos ◽  
Georgia Tsoukleri ◽  
Christos Tsakiroglou ◽  
John Parthenios ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5196 ◽  
Author(s):  
Young-Geun Han

Recent research and development progress of relative humidity sensors using microfiber knot resonators (MKRs) are reviewed by considering the physical parameters of the MKR and coating materials sensitive to improve the relative humidity sensitivity. The fabrication method of the MKR based on silica or polymer is briefly described. The many advantages of the MKR such as strong evanescent field, a high Q-factor, compact size, and high sensitivity can provide a great diversity of sensing applications. The relative humidity sensitivity of the MKR is enhanced by concerning the physical parameters of the MKR, including the waist or knot diameter, sensitive materials, and Vernier effect. Many techniques for depositing the sensitive materials on the MKR surface are discussed. The adsorption effects of water vapor molecules on variations in the resonant wavelength and the transmission output of the MKR are described regarding the materials sensitive to relative humidity. The sensing performance of the MKR-based relative humidity sensors is discussed, including sensitivity, resolution, and response time.


2019 ◽  
Vol 1 (6) ◽  
pp. 2311-2322 ◽  
Author(s):  
Vikram S. Turkani ◽  
Dinesh Maddipatla ◽  
Binu B. Narakathu ◽  
Tahseen S. Saeed ◽  
Sherine O. Obare ◽  
...  

Fully printed, functionalized multi-walled carbon nanotube (FMWCNT)/hydroxyethyl cellulose (HEC) composite-based humidity sensor.


2016 ◽  
Vol 52 (54) ◽  
pp. 8417-8419 ◽  
Author(s):  
Lingling Wang ◽  
Xiaochuan Duan ◽  
Wuyuan Xie ◽  
Qiuhong Li ◽  
Taihong Wang

A novel resistance type humidity sensor was fabricated using poly(ionic liquid)s, which exhibited high sensitivity, fast response, small hysteresis and good repeatability at a relative humidity (RH) in the range of 11–98%, making poly(ionic liquid)s as promising sensing materials for high-performance humidity sensors.


2014 ◽  
Vol 354 ◽  
pp. 41-47 ◽  
Author(s):  
N. Guermat ◽  
A. Bellel ◽  
Salah Sahli ◽  
Yvan Segui ◽  
Patrice Raynaud

Humidity sensitive layers elaborated from pure HMDSO and TEOS by PECVD technique have been studied. Humidity sensing properties including impedance relative humidity (RH) and current RH characteristics were investigated. TEOS films show higher sensitivity and excellent linearity over the explored range of humidity (20–95% RH). However, HMDSO films exhibits a small response and recovery of about 8 and 34 s for humidification and desiccation, respectively, in addition to very low hysteresis (2%). Structural analyses of sensitive layers were characterized by Fourier transform infrared spectroscopy (FTIR).


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7102
Author(s):  
Corneliu Doroftei ◽  
Liviu Leontie

This paper presents the synthesis of gadolinium aluminate (GdAlO3), an oxide compound with a perovskite structure, for applications as a capacitive and/or resistive humidity sensor. Gadolinium aluminate was synthesized by the sol-gel self-combustion method. This method allowed us to obtain a highly porous structure in which open pores prevail, a structure favorable to humidity sensors. Most of the materials studied as capacitive/resistive humidity sensors have significant sensitivities only with respect to one of these types of sensors. In the case of the studied gadolinium aluminate with p-type electric conductivity, the relative humidity of the air has a significant influence on both capacitive and resistive types of electric humidity sensors. The capacity increases about 10,000 times, and the resistance decreases about 8000 times as the relative humidity increases from 0 to 98%. The investigated gadolinium aluminate can be used successfully to obtain high-sensitivity capacitive and/or resistive humidity sensors.


Sensors ◽  
2009 ◽  
Vol 9 (3) ◽  
pp. 1714-1721 ◽  
Author(s):  
Litao Liu ◽  
Xiongying Ye ◽  
Kang Wu ◽  
Rui Han ◽  
Zhaoying Zhou ◽  
...  

2014 ◽  
Vol 50 (4) ◽  
pp. 297-299 ◽  
Author(s):  
S. Puthukodan ◽  
E. Dadrasnia ◽  
V.K.T. Vinod ◽  
H.K. Nguendon ◽  
H. Lamela ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chunjie Wang ◽  
Aihua Zhang ◽  
Hamid Reza Karimi

The humidity sensitive characteristics of the sensor fabricated from 10 mol% La2O3doped CeO2nanopowders with particle size 17.26 nm synthesized via hydrothermal method were investigated at different frequencies. It was found that the sensor shows high humidity sensitivity, rapid response-recovery characteristics, and narrow hysteresis loop at 100 Hz in the relative humidity range from 11% to 95%. The impedance of the sensor decreases by about five orders of magnitude as relative humidity increases. The maximum humidity hysteresis is about 6% RH, and the response and recovery time is 12 and 13 s, respectively. These results indicate that the nanosized La2O3doped CeO2powder has potential application as high-performance humidity sensor.


Sign in / Sign up

Export Citation Format

Share Document