scholarly journals One-Pot Synthesis of Tetrasubstituted Imidazoles Catalyzed by Preyssler-Type Heteropoly Acid

2011 ◽  
Vol 8 (2) ◽  
pp. 547-552 ◽  
Author(s):  
Ali Javid ◽  
Majid M. Heravi ◽  
F. F. Bamoharram ◽  
Mohsen Nikpour

A simple one-pot four-component synthetic method was reported for the preparation of tetrasubstituted imidazole derivatives from benzil, aromatic aldehydes, primary amines and ammonium acetate in the presence of Preyssler-type heteropoly acid catalyst. This method was proved to be eco-benign, easy work-up, convenient, relatively short reaction times and the products were isolated with high yields.

2005 ◽  
Vol 2005 (9) ◽  
pp. 600-602 ◽  
Author(s):  
Yu-Ling Li ◽  
Mei-Mei Zhang ◽  
Xiang-Shan Wang ◽  
Da-Qing Shi ◽  
Shu-Jiang Tu ◽  
...  

In this paper the preparation of 3,3,6,6-tetramethyl-9-aryl-1,2,3,4,5,6,7,8,9,10- decahydroacridin-1,8-dione derivatives from aromatic aldehydes, 5,5-dimethyl-1,3- cyclohexanedione and ammonium acetate in ionic liquids [bmim+][BF4-] is described. This new method has the advantages of easier work-up, milder reaction conditions, high yields and an environmentally benign procedure compared with other methods.


2017 ◽  
Vol 10 (9) ◽  
pp. 3197-3202 ◽  
Author(s):  
Davood Azarifar ◽  
Younes Abbasi ◽  
Omolbanin Badalkhani

Leucine, a naturally occurring α-amino acid, has been found as an effective catalyst to effect the one-pot three-component condensation reaction between aromatic aldehydes, malononitrile and 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Various 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile derivatives are conveniently prepared by these reactions in excellent yields. High yields, short reaction times, simple work-up, use of green and naturally occurring catalyst and solvent are the main merits of the present protocol. 


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Pullar Vadivel ◽  
Rathinam Ramesh ◽  
Appaswami Lalitha

An effective one-pot three-component reaction of aromatic aldehydes with 1,3-diketone and urea or thiourea under solvent-free condition leads to the formation of mono- and bis-dihydropyrimidin-2-(1H)-ones using Ce-MCM-41 as a recyclable solid acid catalyst. This method has several advantages like simple and easy work-up with shorter reaction time, reusability of catalyst, and high yields of Biginelli products.


2016 ◽  
Vol 40 (12) ◽  
pp. 722-726 ◽  
Author(s):  
Afshin Yazdani-Elah-Abadi ◽  
Razieh Mohebat ◽  
Mehrnoosh Kangani

A highly efficient one-pot, two-step microwave-assisted procedure was applied for the rapid and green synthesis of benzo[a]phenazine annulated heterocyclic ring systems from the three- or four-component condensation reactions of 2-hydroxynaphthalene-1,4-dione, o-phenylenediamine, aromatic aldehydes and 1,3-indandione using L-proline as a bifunctional organocatalyst in water. This new procedure has a number of advantages such as high yields, very short reaction times, operational simplicity, simple work-up procedures and avoidance of hazardous or toxic catalysts and organic solvents. Moreover, the catalyst can be recovered and reused several times without much loss of its performance.


Author(s):  
Amir Khojastehnezhad

Silica supported molybdenum oxide (MoO<sub>3</sub>/SiO<sub>2</sub>) was found to be an efficient, eco-friendly and heterogeneous catalyst for the multicomponent reaction of aromatic aldehydes, dimedone and ammonium acetate or aromatic amines under solvent-free conditions to afford the corresponding 1,8-dioxodecahydroacridines  in high yields. The catalyst can be easily recovered and reused for several times without considerable loss of activity. Furthermore, the present method offers several advantages, such as an easy experimental and work-up procedures, short reaction times and good to excellent yields.


Author(s):  
H.B. Ghodasara ◽  
P.M. Singala ◽  
Viresh H. Shah

A series of pyrano[2,3-b]indoles, was efficiently synthesized via one-pot, multi component reaction (MCRs) of 1,3-bifunctional synthon(malononitrile/ethylcyano acetate), aromatic aldehydes and oxiindole in the presence of various basic catalyst. The key advantages of this process are high yields, shorter reaction times, easy work-up, and purification of products by non-chromatographic method.


2019 ◽  
Vol 9 (4) ◽  
pp. 4096-4100

Citric acid is found to be a green and naturally biodegradable catalyst for one-pot, four-condensation of dialkylacetylenedicarboxylate, formaldehyde and amines (aromatic and aliphatic) to afford the corresponding polysubstituted dihydro-2-oxypyrrole derivatives under ambient temperature. The remarkable features of this one-pot procedure are green and low-cost catalyst, high yields, short reaction times, simplicity of operation and work-up procedures, the availability and easy to handle of this solid acid catalyst, avoidance of hazardous or toxic catalyst and mild reaction conditions.


2018 ◽  
Vol 21 (4) ◽  
pp. 271-280 ◽  
Author(s):  
Mohammad A. Ghasemzadeh ◽  
Mohammad H. Abdollahi-Basir ◽  
Zahra Elyasi

Aim and Objective: The multi-component condensation of benzil, primary amines, ammonium acetate and various aldehydes was efficiently catalyzed using cobalt oxide nanoparticles under ultrasonic irradiation. This approach describes an effective and facile method for the synthesis of some novel 1,2,4,5-tetrasubstituted imidazole derivatives with several advantages such as high yields and short reaction times and reusability of the catalyst. Moreover, the prepared heterocyclic compounds showed high antibacterial activity against some pathogenic strains. Materials and Method: The facile and efficient approaches for the preparation of Co3O4 nanoparticles were carried out by one step method. The synthesized heterogeneous nanocatalyst was characterized by spectroscopic analysis including EDX, FE-SEM, VSM, XRD and FT-IR analysis. The as-synthesized cobalt oxide nanoparticles showed paramagnetic behaviour in magnetic field. In addition, the catalytic influence of the nanocatalyst was examined in the one-pot reaction of primary amines, benzil, ammonium acetate and diverse aromatic aldehydes under ultrasonic irradiation. All of the 1,2,4,5-tetrasubstituted imidazoles were investigated and checked with m.p., 1H NMR, 13C NMR and FT-IR spectroscopy techniques. The antibacterial properties of the heterocycles were evaluated in vitro by the disk diffusion against pathogenic strains such as Escherichia coli (EC), Bacillus subtillis (BS), Staphylococcus aureus (SA), Salmonellatyphi (ST) and Shigella dysentrae (SD) species. Results: In this research cobalt oxide nanostructure was used as a robust and green catalyst in the some novel imidazoles. The average particle size measured from the FE-SEM image is found to be 20-30 nm which confirmed to the obtained results from XRD pattern. Various electron-donating and electron-withdrawing aryl aldehydes were efficiently reacted in the presence of Co3O4 nanoparticles. The role of the catalyst as a Lewis acid is promoting the reactions with the increase in the electrophilicity of the carbonyl and double band groups. To investigate the reusability of the catalyst, the model study was repeated using recovered cobalt oxide nanoparticles. The results showed that the nanocatalyst could be reused for five times with a minimal loss of its activity. Conclusion: We have developed an efficient and environmentally friendly method for the synthesis of some tetrasubstituted imidazoles via three-component reaction of benzil, primary amines, ammonium acetate and various aldehydes using Co3O4 NPs. The present approach suggests different benefits such as: excellent yields, short reaction times, simple workup procedure and recyclability of the magnetic nanocatalyst. The prepared 1,2,4,5-tetrasubstituted imidazoles revealed high antibacterial activities and can be useful in many biomedical applications.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Kobra Nikoofar ◽  
Fatemeh Shahriyari

AbstractA simple, straightforward, and ultrasound-promoted method for the preparation of some highly functionalized tetrahydropyridines reported via pseudo five-component reaction of (hetero)aromatic aldehydes, different anilines, and alkyl acetoacetates in the presence of [N-CH2CO2H-3-pic]+HSO4−, as a novel ionic liquid, in green aqueous medium. The IL was synthesized utilizing simple and easily-handled substrates and characterized by FT-IR, 1H NMR, 13C NMR, GC-MASS, FESEM, EDX, and TGA/DTG techniques. The procedure contains some highlighted aspects which are: (a) performing the MCR in the presence of aqua and sonic waves, as two main important and environmentally benign indexes in green and economic chemistry, (b) high yields of products within short reaction times, (c) convenient work-up procedure, (d) preparing the new IL via simple substrates and procedure.


2021 ◽  
Vol 18 ◽  
Author(s):  
Abolfazl Olyaei ◽  
Zahra Ghahremany ◽  
Madieh Sadeghpour

: A green and efficient protocol was developed for the one-pot three-component synthesis of novel 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-(arylamino)-1H-indene-1,3(2H)-dione derivatives by the reaction of 4-hydroxycoumarin, ninhydrin and aromatic amines in the presence of guanidine hydrochloride as an organocatalyst under solvent-free conditions. The present approach offers several advantages such as low cost, simple work-up, short reaction times, chromatography-free purification, high yields and greener conditions.


Sign in / Sign up

Export Citation Format

Share Document