scholarly journals Gamma Radiolysis Studies of Aqueous Solution of Brilliant Green Dye

2011 ◽  
Vol 8 (2) ◽  
pp. 680-684
Author(s):  
D. V. Parwate ◽  
S. S. Mankar

The effect of γ–radiation on colour intensity of aqueous solution of Brilliant Green has been investigated at two different concentrations. The degradation of Brilliant Green (BG) has also been investigated in presence of suspended ZnO, by adding different amounts of ZnO. Simultaneously the conductance and pH of each solution system were measured before and after γ-irradiation. All the γ–irradiations were performed at a dose rate of 0.60 kGyhr-1in GC-900. The maximum dose required for the complete degradation of the dye was found to be 0.39 kGy. G(-dye) values were found to decrease with increase in gamma dose and were in the range 4.26 - 12.81. The conductance (7.6 - 25.3 μS) and pH values increased marginally with dose for both the concentrations. The rate of decolouration was found to be high at lower doses and the efficiency of dye removal was higher at low concentration of the dye. This may be attributed to the presence of reaction by-products from the destruction of parent compound build up and compete for reaction intermediate species. The rate of reaction and rate constants were calculated and it was found that the degradation reaction follows first order kinetics. It was found that the decolouration percentage was more in dye systems in absence of ZnO.

2018 ◽  
Vol 106 (11) ◽  
pp. 909-916
Author(s):  
Louisa Bounemia ◽  
Abdelhamid Mellah

Abstract The pretreatment of the phosphoric acid is a stage of utmost importance leading to an optimal recovery of the uranium present in this acid. To this end, the degradation of the organic matter which obstructs considerably this recovery was tested by γ irradiation. This study lies within the scope of the radiation/matter interaction; concerning the use of the γ irradiator as proceed of phosphoric acid purification by the degradation of di butyl phthalate (DBP). Studies of the interaction of γ radiation with phosphoric acid solutions polluted by an organic matter concern the study of the influence of some parameters such as: dose rate (0.5–35 kGy), initial concentration (50–500 mg/L) of the pollutant, pH and % in P2O5 on the degradation of organic matter by γ irradiation. The reactions followed pseudo first order kinetics for different initial concentrations. The results made it possible to say that the degradation of di butyl phthalate by γ irradiation is dependent on the amount of the concentration of DBP and pH. The G-values decreased with absorbed doses, and increased with higher initial concentrations.Purification of phosphoric acid by γ radiation does not degrade the quality of this acid.


2019 ◽  
Vol 7 (3) ◽  
pp. 79-88
Author(s):  
Raad N. Salih ◽  
Salah-Aldin Naman

photocatalytic degradation of fungicides (chlorothalonil) in suspension aqueous solution with semiconductors (tio­2, zno) and without semiconductor has been investigated. the influence of different parameters such as light sources, the concentration of fungicides, type of semiconductors and temperature were studied by uv-visible spectrophotometer at 232 and 254 nm. the degradation reaction order spectra of chlorothalonil were determined which first order at 232 nm and second order at 254 nm. in addition, the rate constant, arrhenius factor and energy of activation can be estimated for both peaks. moreover, conductivity of chlorothalonil has been recorded during the photo-degradation and the rate of reaction also has been determined that dependent on product formation.


2020 ◽  
Vol 98 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Baichen Liu ◽  
Bingli Ren ◽  
Yun Xia ◽  
Yang Yang ◽  
Yingwu Yao

The electrochemical degradation of safranine T (ST) in aqueous solution was studied. The effects of current density, initial concentration of ST, initial pH values, and Na2SO4 concentration on electrocatalytic degradation of ST in the aqueous solution by Ti/PbO2 electrode were analyzed. The experimental results showed that the electrochemical oxidization reaction of ST fitted a pseudo first order kinetics model. By using the Ti/ PbO2 electrode as the anode, 99.96% of ST can be eliminated at 120 min. It means that the electrochemical degradation of ST in aqueous solution by the Ti/PbO2 electrode was very effective. The optimal reaction conditions were as follows: current density, 40 mA cm−2; initial ST concentration, 100 mg L−1; Na2SO4 concentration, 0.20 mol L−1; initial pH, 6. It can be known from the test of UV–vis and HPLC in the reaction process that the intermediates will be generated, and the possible intermediate structure was studied by HPLC–MS test. However, with the progress of degradation reaction, the intermediates will eventually be oxidized into CO2 and H2O. Cyclic voltammetry and fluorescence experiments proved that ST was indirectly oxidized through the generation of hydroxyl radicals. Under the optimal reaction conditions, the energy required to completely remove ST was 17.92 kWh/m3.


2000 ◽  
Vol 83 (3) ◽  
pp. 569-578 ◽  
Author(s):  
Raminderjit S Battu ◽  
Rajinder L Kalra ◽  
Ranjit S Dhillon

Abstract Residues of carbofuran and its metabolites were studied in sugarcane plants and soil after application at 1 and 2 kg/ha. The residues of carbofuran and its metabolites were extracted by refluxing with 0.25N HCl, partitioned into dichloromethane, and cleaned up on acidic alumina. The respective 7-phenols of carbofuran, 3-ketocarbofuran, and 3-hydroxycarbofuran were destroyed by treatment with ceric ammonium sulfate, and the residues were derivatized with 1-fluoro-2,4-dinitrobenzene. The derivatives were estimated by gas chromatography with nitrogen-phosphorus detection. The concentration of 3-hydroxycarbofuran in sugarcane plants remained higher and persisted longer than that of the parent compound. Carbofuran-derived residues were not detected in cane juice. Soil samples were found to contain only carbofuran, which declined at a very fast rate that followed a first-order kinetics rate of reaction.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1097 ◽  
Author(s):  
Legartová ◽  
Lochmanová ◽  
Zdráhal ◽  
Kozubek ◽  
Šponer ◽  
...  

The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.


1979 ◽  
Vol 44 (12) ◽  
pp. 3632-3643 ◽  
Author(s):  
Karel Mach ◽  
Igor Janovský ◽  
Karel Vacek

Total yields of paramagnetic species, their optical bleaching and thermal annealing in acetic, propionic, a-butyric, isobutyric, and pivalic acid γ-irradiated at 77 K were followed by ESR spectroscopy. Radical anions, always found after irradiation, disappear during optical bleaching without formation of any paramagnetic product. During thermal annealing they are converted almost quantitatively into the α-radicals of the respective acid, with the exception of pivalic acid. Amounts of radical anions were estimated from the difference of integrated ESR spectra taken before and after optical bleaching. The results show that approximately equal amounts of the reduction and oxidation paramagnetic products of the γ-irradiation can be detected.


Sign in / Sign up

Export Citation Format

Share Document