scholarly journals Role of Flexibility in Protein-DNA-Drug Recognition: The Case of Asp677Gly-Val703Ile Topoisomerase Mutant Hypersensitive to Camptothecin

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ilda D'Annessa ◽  
Cinzia Tesauro ◽  
Paola Fiorani ◽  
Giovanni Chillemi ◽  
Silvia Castelli ◽  
...  

Topoisomerases I are ubiquitous enzymes that control DNA topology within the cell. They are the unique target of the antitumor drug camptothecin that selectively recognizes the DNA-topoisomerase covalent complex and reversibly stabilizes it. The biochemical and structural-dynamical properties of the Asp677Gly-Val703Ile double mutant with enhanced CPT sensitivity have been investigated. The mutant displays a lower religation rate of the DNA substrate when compared to the wild-type protein. Analyses of the structural dynamical properties by molecular dynamics simulation show that the mutant has reduced flexibility and an active site partially destructured at the level of the Lys532 residue. These results demonstrate long-range communication mechanism where reduction of the linker flexibility alters the active site geometry with the consequent lowering of the religation rate and increase in drug sensitivity.

2019 ◽  
Vol 167 (3) ◽  
pp. 315-322
Author(s):  
An-Ning Feng ◽  
Chih-Wei Huang ◽  
Chi-Huei Lin ◽  
Yung-Lung Chang ◽  
Meng-Yuan Ni ◽  
...  

Abstract 4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism, catalysing the oxidation of 4-hydroxyphenylpyruvate to homogentisate. Genetic deficiency of this enzyme causes type III tyrosinaemia. The enzyme comprises two barrel-shaped domains formed by the N- and C-termini, with the active site located in the C-terminus. This study investigated the role of the N-terminus, located at the domain interface, in HPPD activity. We observed that the kcat/Km decreased ∼8-fold compared with wild type upon removal of the 12 N-terminal residues (ΔR13). Interestingly, the wild-type level of activity was retained in a mutant missing the 17 N-terminal residues, with a kcat/Km 11-fold higher than that of the ΔR13 mutant; however, the structural stability of this mutant was lower than that of wild type. A 2-fold decrease in catalytic efficiency was observed for the K10A and E12A mutants, indicating synergism between these residues in the enzyme catalytic function. A molecular dynamics simulation showed large RMS fluctuations in ΔR13 suggesting that conformational flexibility at the domain interface leads to lower activity in this mutant. These results demonstrate that the N-terminus maintains the stability of the domain interface to allow for catalysis at the active site of HPPD.


2019 ◽  
Author(s):  
Yashraj S. Kulkarni ◽  
Tina L. Amyes ◽  
John Richard ◽  
Shina Caroline Lynn Kamerlin

Manuscript and supporting information outlining an analysis of an extended Brønsted relationship obtained from empirical valence bond simulations of substrate deprotonation catalyzed by wild-type and mutant variants of triosephosphate isomerase.


2019 ◽  
Author(s):  
Raju Dash ◽  
Ho Jin Choi ◽  
Il Soo Moon

AbstractRecently, critical roles of genetic variants in Triggering Receptor Expressed on Myeloid cells 2 (TREM2) for myeloid cells to Alzhimer’s disease have been aggressively highlighted. However, little studies focused to the deleterious role of Nasu-Hakola disease (NHD) associated TREM2 variants. In order to get insights into the contributions of these variants in neurodegeneration, we investigated the influences of three well-known NHD associated TREM2 mutations (Y38C, T66M and V126G) on the loss-of-function by using conventional molecular dynamics simulation. Compared to the wild type, the mutants produced substantial differences in the collective motions in the loop regions, which not only promotes structural remodelling in complementarity-determining region 2 (CDR2) loop but also in CDR1 loop, through changing the inter and intra-loop hydrogen bonding network. In addition, the structural studies from free energy landscape showed that Y38, T66 and V126 are crucial for maintaining structural features of CDR1 and CDR2 loops, while their mutation at this position produced steric clash and thus contributes to the structural impact and loss of ligand binding. These results revealed that the presence of the mutations in TREM2 ectodomain induced flexibility and promotes structural alterations. Dynamical scenarios, which are provided by the present study, may be critical to our understanding of the role of the three TREM2 mutations in neurodegenerative diseases.


2018 ◽  
Vol 114 (3) ◽  
pp. 340a
Author(s):  
Purushottam Tiwari ◽  
Prem Chapagain ◽  
Yuk-Ching Tse-Dinh ◽  
Aykut Uren

1998 ◽  
Vol 330 (2) ◽  
pp. 967-974 ◽  
Author(s):  
Peter LEE-ROBICHAUD ◽  
E. Monika AKHTAR ◽  
Muhammad AKHTAR

Certain cytochrome P-450s involved in the transformation of steroids catalyse not only the hydroxylation process associated with the group of enzymes, but also an acyl-carbon cleavage reaction. The hydroxylation occurs using an iron-monooxygen species while the acyl-carbon cleavage has been suggested to be promoted by an iron peroxide. In this paper we have studied the role of active site protic residues, Glu305 and Thr306, in modulating the two activities. For this purpose, the kinetic parameters for the hydroxylation reaction (pregnenolone → 17α-hydroxypregnenolone) and two different versions of acyl-carbon cleavage (17α-hydroxypregnenolone → dehydroepiandrosterone and 3β-hydroxyandrost-5-ene-17β-carbaldehyde → 3β-hydroxyandrost-5,16-diene+androst-5-ene-3β,17α-diol) were determined using the wild-type human CYP17 and its eight different single and double mutants. In addition the propensity of the proteins to undergo a subtle rearrangement converting the 450 nm active-form into an inactive counterpart absorbing at 420 nm, was monitored by measuring the of the P-450 → P-420 conversion. The results are interpreted to draw the following conclusions. The functional groups of Glu305 and Thr306 do not directly participate in the two proton delivery steps required for hydroxylation but may be important participants for the provision of a net work of hydrogen bonds for ‘activating’ water that then acts as a proton donor. The loss of any one of these residues is, therefore, only partially debilitating. That the mutation of Thr306 impairs the hydroxylation reaction more than it does the acyl-carbon cleavage is consistent with the detailed mechanistic scheme considered in this paper. Furthermore attention is drawn to the fact that the mutation of Glu305 and Thr306 subtly perturbed the architecture of the active site, which affects the geometry of this region of the protein and therefore its catalytic properties.


2021 ◽  
Author(s):  
Shokouh Rezaei ◽  
Yahya Sefidbakht ◽  
Filipe Pereira

Abstract SARS-CoV-2 non-structural protein 1 (Nsp1) is a virulence factor that inhibits the translation of host mRNAs and interact with viral RNA. Despite the relevance of Nsp1, few studies have been conducted to understand the effect of mutations on Nsp1 structure and function. Here, we provide a molecular dynamics simulation of SARS-CoV-2 Nsp1, wild type and variants. We found that SARS-CoV-2 Nsp1 has a more Rg value than SARS-CoV-1 Nsp1, with indicate an effect on the folding protein. This result suggest that SARS-CoV-2 Nsp1 can more easily approach the active site of the ribosome compared to SARS-CoV-1 Nsp1. In addition, we found that the C-terminal of the SARS-CoV-2 Nsp1, in particular residues 164 to 170, are more flexible than other regions of SARS-CoV-2 Nsp1 and SARS-CoV-1 Nsp1, confirming the role of this region in the interaction with the 40S subunit. Moreover, multiple deletion mutations have been found in the N/C-terminal of the SARS-CoV-2 Nsp1, which seems the effect of SARS-CoV-2 Nsp1 multiple deletions is greater than that of substitutions. Among all deletions, D156-158 and D80-90 may destabilize the protein structure and possibly increase the virulence of the SARS-CoV-2. Overall, our findings reinforce the importance of studying Nsp1 conformational changes in new variants and its effect on virulence of SARS-CoV-2.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Martino L. Di Salvo ◽  
J. Neel Scarsdale ◽  
Galina Kazanina ◽  
Roberto Contestabile ◽  
Verne Schirch ◽  
...  

Serine hydroxymethyltransferase catalyzes the reversible interconversion of L-serine and glycine with transfer of one-carbon groups to and from tetrahydrofolate. Active site residue Thr254 is known to be involved in the transaldimination reaction, a crucial step in the catalytic mechanism of all pyridoxal 5′-phosphate- (PLP-) dependent enzymes, which determines binding of substrates and release of products. In order to better understand the role of Thr254, we have expressed, characterized, and determined the crystal structures of rabbit cytosolic serine hydroxymethyltransferase T254A and T254C mutant forms, in the absence and presence of substrates. These mutants accumulate a kinetically stablegem-diamine intermediate, and their crystal structures show differences in the active site with respect to wild type. The kinetic and crystallographic data acquired with mutant enzymes permit us to infer that conversion ofgem-diamine to external aldimine is significantly slowed because intermediates are trapped into an anomalous position by a misorientation of the PLP ring, and a new energy barrier hampers the transaldimination reaction. This barrier likely arises from the loss of the stabilizing hydrogen bond between the hydroxymethyl group of Thr254 and theε-amino group of active site Lys257, which stabilizes the external aldimine intermediate in wild type SHMTs.


Sign in / Sign up

Export Citation Format

Share Document