scholarly journals Hydatid Cyst Protoscolices Induce Cell Death in WEHI-164 Fibrosarcoma Cells and Inhibit the Proliferation of Baby Hamster Kidney FibroblastsIn Vitro

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Hossein Yousofi Darani ◽  
Narges Soozangar ◽  
Soliman Khorami ◽  
Fatomeh Taji ◽  
Mortaza Yousofi ◽  
...  

Bothin vitroandin vivomodels have demonstrated that some parasites can interfere with tumor cell growth. The present study investigates the anticancer activity of hydatid cyst protoscolices on WEHI-164 fibrosarcoma cells and baby hamster kidney (BHK) fibroblast cellsin vitro. Those above two cell types were treated with live hydatid cyst protoscolices or left untreated for control groups. After 48 h, lactate dehydrogenase (LDH) and cell counts were assayed for both treated cells and control groups. Following treatment with hydatid cyst protoscolices, cell proliferation of both cell types was inhibited, and lysis of fibrosarcoma cells increased. Based on these results, it appears that hydatid cyst protoscolices have strong anticancer activity, and additional studies are needed to further clarify the mechanisms of this activity.

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2020 ◽  
Vol 21 (19) ◽  
pp. 7294
Author(s):  
Celia Alonso ◽  
Sergio Utrilla-Trigo ◽  
Eva Calvo-Pinilla ◽  
Luis Jiménez-Cabello ◽  
Javier Ortego ◽  
...  

Bluetongue virus (BTV) and African horse sickness virus (AHSV) are vector-borne viruses belonging to the Orbivirus genus, which are transmitted between hosts primarily by biting midges of the genus Culicoides. With recent BTV and AHSV outbreaks causing epidemics and important economy losses, there is a pressing need for efficacious drugs to treat and control the spread of these infections. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antiviral activity. Here, we evaluated ATA as a potential antiviral compound against Orbivirus infections in both mammalian and insect cells. Notably, ATA was able to prevent the replication of BTV and AHSV in both cell types in a time- and concentration-dependent manner. In addition, we evaluated the effect of ATA in vivo using a mouse model of infection. ATA did not protect mice against a lethal challenge with BTV or AHSV, most probably due to the in vivo effect of ATA on immune system regulation. Overall, these results demonstrate that ATA has inhibitory activity against Orbivirus replication in vitro, but further in vivo analysis will be required before considering it as a potential therapy for future clinical evaluation.


Author(s):  
Ruta Petraitiene ◽  
Vidmantas Petraitis ◽  
Bo Bo Win Maung ◽  
Robert S. Mansbach ◽  
Michael R. Hodges ◽  
...  

Candida endophthalmitis is a serious sight-threatening complication of candidemia that may occur before or during antifungal therapy. Hematogenous Candida meningoencephalitis (HCME) is also a serious manifestation of disseminated candidiasis in premature infants, immunosuppressed children, and immunocompromised adults. We evaluated the antifungal efficacy and pharmacokinetics of the prodrug fosmanogepix (APX001) in a rabbit model of endophthalmitis/HCME. Manogepix (APX001A), the active moiety of prodrug fosmanogepix, inhibits the fungal enzyme Gwt1, and is highly active in vitro and in vivo against Candida spp., Aspergillus spp., and other fungal pathogens. Plasma pharmacokinetics of manogepix after oral administration of fosmanogepix on Day-6 at 25, 50, and 100 mg/kg resulted in plasma Cmax of 3.96±0.41, 4.14±1.1, and 11.5±1.1 μg/ml, respectively, and AUC0-12 of 15.8±3.1, 30.8±5.0, 95.9±14 μg·h/ml, respectively. Manogepix penetrated into the aqueous humor, vitreous, and choroid with liquid to plasma ratios ranging from 0.19 to 0.52, 0.09 to 0.12, and 0.02 to 0.04, respectively. These concentrations correlated with a significant decrease in Candida albicans burden in vitreous (>101-103) and choroid (>101-103) (P≤0.05 and P≤0.001, respectively). Aqueous humor had no detectable C. albicans in treatment and control groups. The tissue/plasma concentration ratios of manogepix in meninges, cerebrum, cerebellum, and spinal cord were approximately 1:1, which correlated with a >102-104 decline of C. albicans in tissue vs control (P≤0.05). Serum and CSF (1→3)-β-D-glucan levels demonstrated significant declines in response to fosmanogepix treatment. These findings provide an experimental foundation for fosmanogepix in treatment of Candida endophthalmitis and HCME and de-risk the clinical trials of candidemia and invasive candidiasis.


Parasitology ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Matheus Marques Milagre ◽  
Renata Tupinambá Branquinho ◽  
Maira Fonseca Gonçalves ◽  
GMP de Assis ◽  
Maykon Tavares de Oliveira ◽  
...  

AbstractBackground:The current drugs for Chagas disease treatment present several limitationsMethods:The sesquiterpene lactone goyazensolide (GZL) was evaluated regarding to cytotoxicity and trypanocidal activity against amastigotes, selectivity index (SI) in vitro, acute toxicity and anti-Trypanosoma cruzi activity in vivo.Results:The in vitro cytotoxicity in H9c2 cells was observed at doses >250 ng mL−1 of GZL and the SI were of 52.82 and 4.85 (24 h) and of 915.00 and 41.00 (48 h) for GZL and BZ, respectively. Nephrotoxicity and hepatotoxicity were not verified. Treatment with GZL of mice infected with CL strain led to a significant decrease of parasitaemia and total survival at doses of 1 and 3 mg kg−1 day−1 by oral and IV, respectively. This last group cured 12.5% of the animals (negativation of HC, PCR, qPCR and ELISA). Animals infected with Y strain showed significant decrease of parasitaemia and higher negativation in all parasitological tests in comparison to BZ and control groups, but were ELISA reactive, as well as the BZ group, but mice treated with 5.0 mg kg−1 day−1 by oral were negative in parasitological tests and survived.Conclusion:GZL was more active against T. cruzi than benznidazole in vitro and presented important therapeutic activity in vivo in both T. cruzi strains.


2020 ◽  
Vol 13 (7) ◽  
pp. 1327-1333
Author(s):  
Soukaina El-Guendouz ◽  
Soumia Zizi ◽  
Youssef Elamine ◽  
Badiaa Lyoussi

Background and Aim: Hexavalent chromium (Cr (VI)) compounds have been shown to induce nephrotoxicity associated with oxidative stress in humans and animals. The aim of the present study was to investigate the nephroprotective effect of bee propolis, as highly antioxidant natural product, in vivo using an animal model. Materials and Methods: First of all, total phenol and flavonoid contents of propolis sample were estimated in vitro. Afterward, to study the protective effect of propolis on renal damages caused by an injection of a single dose of potassium dichromate (15 mg/kg b.wt), 24 male Wister rats were divided into test and control groups. Propolis treatment was performed by oral gavage of 100 mg/kg b.wt/day, while the control groups received water instead. The 24 h urine was collected and blood samples were withdrawn before and after each treatment for further analysis. Results: Propolis revealed to be rich in polyphenols and flavonoids. Chromate provoked a nephrotoxic effect expressed by a drastic decrease in glomerular filtration assessed by creatinine clearance. However, the administration of propolis attenuated the renal damages induced by the chromate. This attenuation can be seen by the increase of creatinine clearance when comparing propolis treated group to the non-treated group. Conclusion: Propolis showed a protective potential against chromate-induced nephrotoxicity through the amelioration of chromate's toxic effects. It might be concluded that propolis could be effective as chemoprotectant in the management of potassium dichromate-induced nephrotoxicity.


Hand ◽  
2018 ◽  
Vol 15 (2) ◽  
pp. 264-270 ◽  
Author(s):  
Kunihide Muraoka ◽  
Wei Le ◽  
Anthony W. Behn ◽  
Jeffrey Yao

Background: We have reported that bioactive sutures coated with bone marrow–derived mesenchymal stem cells (BMSCs) enhance tendon repair strength in an in vivo rat model. We have additionally shown that growth differentiation factor 8 (GDF-8, also known as myostatin) simulates tenogenesis in BMSCs in vitro. The purpose of this study was to determine the possibility of BMSC-coated bioactive sutures treated with GDF-8 to increase tendon repair strength in an in vivo rabbit tendon repair model. Methods: Rabbit BMSCs were grown and seeded on to 4-0 Ethibond sutures and treated with GDF-8. New Zealand white rabbits’ bilateral Achilles tendons were transected and randomized to experimental (BMSC-coated bioactive sutures treated with GDF-8) or plain suture repaired control groups. Tendons were harvested at 4 and 7 days after the surgery and subjected to tensile mechanical testing and quantitative polymerase chain reaction. Results: There were distinguishing differences of collagen and matrix metalloproteinase RNA level between the control and experimental groups in the early repair periods (day 4 and day 7). However, there were no significant differences between the experimental and control groups in force to 1-mm or 2-mm gap formation or stiffness at 4 or 7 days following surgery. Conclusions: BMSC-coated bioactive sutures with GDF-8 do not appear to affect in vivo rabbit tendon healing within the first week following repair despite an increased presence of quantifiable RNA level of collagen. GDF-8’s treatment efficacy of the early tendon repair remains to be defined.


2020 ◽  
Vol 64 (7-8-9) ◽  
pp. 433-443
Author(s):  
Clarissa R. Taufer ◽  
Monica A. Rodrigues-Da-Silva ◽  
Giordano W. Calloni

The neural crest (NC) is a transitory embryonic structure of vertebrates that gives rise to an astonishing variety of derivatives, encompassing both neural and mesenchymal cell types. Neural crest cells (NCCs) are an excellent model to study how environmental factors modulate features such as cell multipotentiality and differentiation. Tests with multifunctional substrates that allow NCCs to express their full potential, while promoting cell subcloning, are needed to advance knowledge about NCC self-renewal and to foster future biotechnological approaches. Here we show that a self-assembled peptide named PuraMatrixTM is an excellent substrate that allows the differentiation of NCCs based on the identification of seven different cell types. Depending on the PuraMatrixTM concentration employed, different frequencies and quantities of a given cell type were obtained. It is noteworthy that an enormous quantity and diversity of mesenchymal phenotypes, such as chondrocytes, could be observed. The quantity of adipocytes and osteocytes also increased with the use of mesenchymal differentiation factors (MDF), but PuraMatrixTM alone can support the appearance of these mesenchymal cell types. PuraMatrixTM will promote advances in studies related to multipotentiality, self-renewal and control of NCC differentiation, since it is an extremely simple and versatile material which can be employed for both in vivo and in vitro experiments.


1976 ◽  
Vol 54 (6) ◽  
pp. 587-590 ◽  
Author(s):  
David G. Lygre

Inhibition by saccharin of rat liver glucose-6-phosphatase (EC 3.1.3.9) generally decreased as the pH increased in the range pH 4–8. This pattern was exhibited by homogenates from control and alloxan-treated animals assayed each in the absence and presence of 0.2% (w/v) deoxycholate. Saccharin inhibited in competitive fashion with respect to glucose-6-phosphate (glucose-6-P). There was a small increase in Km (glucose-6-P) but not Ki (saccharin) values in alloxan-treated rats when assays were conducted in the absence of deoxycholate. In the presence of this detergent there was no significant difference in these kinetic parameters between the alloxan-treated and control groups. Deoxycholate decreased Km (glucose-6-P) and increased Ki (saccharin) values. Calculations using these kinetic parameters indicate that, under usual hepatic glucose-6-P concentrations and relatively high levels of saccharin in liver, the inhibition by saccharin of glucose-6-phosphatase is unlikely to be of major significance in vivo.


2001 ◽  
Vol 67 (9) ◽  
pp. 3928-3933 ◽  
Author(s):  
Glynis L. Kolling ◽  
Karl R. Matthews

ABSTRACT Escherichia coli O157:H7 (strains ATCC 43895 and FO46) became nonculturable in sterile, distilled, deionized water or after exposure to chlorine. Recovery of nonculturable E. coli O157:H7 was examined by in vitro and in vivo methods. The decline in culturability of starved E. coli O157:H7 was measured by plate count on rich medium. Recovery in vitro of nonculturable cells was conducted with media amended with catalase or sodium pyruvate; however, there was no apparent increase over culturable cell counts on amended versus nonamended media. Although nonculturable E. coli O157:H7 did not recover under in vitro conditions, a mouse model was used to determine if in vivo conditions would provide sufficient conditions for recovery of nonculturable E. coli O157:H7. In separate studies, mice were orally challenged with starvation-induced nonculturable cells (FO46) or chlorine-induced nonculturable cells (43895 and FO46). Passage through the mouse gastrointestinal tract had no effect on recovery of nonculturable (starvation or chlorine induced)E. coli O157:H7 (43895 or FO46), based on analysis of fecal samples. Mouse kidneys were assayed for the presence of Shiga toxin using the Vero cell assay. Differences in cytotoxicity towards Vero cells from kidney samples of mice receiving nonculturable cells and control mice were not significant, suggesting a loss of virulence.


2004 ◽  
Vol 16 (9) ◽  
pp. 221
Author(s):  
H. Yang ◽  
S. Cox ◽  
J. Shaw ◽  
G. Jenkin

Ovarian tissue grafts commonly contain only limited numbers of follicles. The functional life span and ability to retrieve as many mature oocytes as possible from ovarian grafts is important when grafting is used to restore fertility. This study aimed to determine whether ovarian grafts responded to exogenous hormones in a similar manner to that of in situ ovaries. Ovaries of C57BlxCBA F1 mice were cut in half and grafted to one of three different graft sites in females of the same F1 line; bursal capsule (BC, n = 12), kidney capsule (KC, n = 6), subcutaneous tissue (SC, n = 24). Three weeks after grafting, half of the graft recipients in each group were treated with 5IU PMSG followed by 5IU hCG 48 hours later. Oocytes were collected directly from the grafted ovaries 10 hours after the hCG injection and fertilized in vitro. Oocytes from the ovaries of superovulated normal mice (n = 4) of the same hybrid strain were used as controls. Two-cell embryos were transferred to pseudopregnant recipients and collected at day 15 of gestation or the animals were allowed to go to term. Mature fertilisable MII oocytes were retrieved from stimulated grafts from all graft sites, however, the number (BC 9, KC 5, SC 2 oocytes per ovary) and proportion of two-cell embryos in each grafted group (BC 52%, KC 32%, SC 32%) was significantly (P < 0.05) lower than in the in vivo matured control (16 oocytes, 85% two-cell). The fetal and placental weights of fetuses produced from graft-derived oocytes were not significantly different to the control group. Phenotypically normal pups were born in each of the graft and control groups. In conclusion, ovarian grafts treated with exogenous gonadotrophins produce significantly fewer mature oocytes and two cell embryos compared to in situ ovaries. Work supported by ARC and NIH RFA.


Sign in / Sign up

Export Citation Format

Share Document