scholarly journals Wideband Circularly Polarized Dielectric Rod Antenna

2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
Min Guo ◽  
Ji-Jun Yan ◽  
Shun-Shi Zhong ◽  
Zhu Sun

A new dielectric rod antenna (DRA) is introduced to produce circular polarization (CP) over a wide frequency band without a complex feed network. Along with the simulated results, measured results of the antenna prototype are presented, showing a 3 dB axial ratio (AR) CP bandwidth of 17.7%. The radiation characteristics of the fabricated antenna are also demonstrated showing the measured gain of better than 6.2 dBi. Moreover, the measured impedance bandwidth (VSWR≤2) reaches 20.1%, from 8.75 GHz to 10.7 GHz, while the CP beamwidth (AR≤3 dB) at the central frequency is measured over 120°.

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Sanyog Rawat ◽  
K. Sharma

AbstractThe radiation characteristics of a stacked microstrip antenna geometry proficient of providing circular polarization along with wide impedance bandwidth is simulated by using IE3D software and later on this antenna was fabricated on FR-4 substrate with an air gap and testing is done in free space. The feed location, location of applied shorting pin and width of air gap introduced between driver element and parasitically coupled element were optimized to obtain best results. The measured impedance bandwidth better than 31.72% and axial ratio bandwidth close to 1.68% were achieved with the proposed geometry. The simulated and measured results obtained are in good match with each other.


2015 ◽  
Vol 9 (1) ◽  
pp. 171-175 ◽  
Author(s):  
Puria Bairami ◽  
Mahdi Zavvari

In this paper, an array antenna with asymmetric antenna fed network is presented. Total size of the proposed array antenna (with 2 × 2 elements) is 90 × 90 mm2 and distance between elements (fed by fed) is λ0/2 (λ0 = wavelength in free space). The proposed antenna is fed by coaxial cable that isolated input impedance from impedance of the array antenna feed network. The measured impedance bandwidth of the coaxial fed circular polarization array (S11 < −10 dB) is 47.9% from 4.6 to 7.5 GHz (1.63:1), and the measured 3-dB axial-ratio bandwidth is 42% from 4.7 to 7.2 GHz. The peak gain of antenna is 9.1 dBic.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Deqiang Yang ◽  
Meng Zou ◽  
Jin Pan

A single-point-fed circularly polarized (CP) rectangular dielectric resonator antenna (DRA) with wide CP bandwidth is presented. By usingTE111andTE113modes of the rectangular DRA, a wideband CP performance is achieved. The coupling slot of the antenna contains a resistor loaded monofilar-spiral-slot and four linear slots. Design concept of the proposed antenna is demonstrated by simulations, and parameter studies are carried out. Prototype of the proposed antenna was fabricated and measured. Good agreement between the simulation and measurement is obtained. The measured impedance bandwidth (|S11|<-10 dB) and 3 dB axial-ratio (AR) bandwidth are 51.4% (1.91–3.23 GHz) and 33.0% (2.15–3.00 GHz), respectively.


2016 ◽  
Vol 78 (5-9) ◽  
Author(s):  
Muhammad Fauzan Edy Purnomo ◽  
Hadi Suyono ◽  
Panca Mudjirahardjo ◽  
Rini Nur Hasanah

The circularly polarized (CP) microstrip antennas, both of singly- and doubly-fed types, possess inherent limitation in gain, impedance and axial-ratio bandwidths. These limitations are caused mainly by the natural resonance of the patch antenna which has a high unloaded Q-factor and the frequency-dependent excitation of two degenerative modes (TM01 and TM10) when using a single feed. Many applications which require circular polarization, large bandwidth, and good performance, especially in the field of wireless communication, are still difficult to be designed by using antenna software. Some consideration to take will include the application target and design specification, the materials to be used, and the method to choose (formula, numerical analysis, etc). This paper explains and analyzes the singly-fed microstrip antenna with circular polarization and large bandwidth. This singly-fed type of microstrip antenna provides certain advantage of requiring no external circular polarizer, e.g. the 900 hybrid, as it only needs to apply some perturbation or modification to a patch radiator with a standard geometry. The design of CP and large-bandwidth microstrip antenna is done gradually, by firstly truncating one tip, then truncating the whole three tips, and finally modifying it into a pentagonal patch structure and adding an air-gap to obtain larger bandwidths of impedance, gain and axial ratio. The last one antenna structure results in a novelty because it is a rare design of antenna which includes all types of bandwidth (impedance, gain, and axial ratio) being simultaneously larger than the origin antenna. The resulted characteristic performance of the 1-tip (one-tip) antenna shows respectively 1.9% of impedance bandwidth, 3.1% of gain bandwidth, and 0.45% of axial-ratio bandwidth. For the 3-tip (three-tip) step, the resulted bandwidths of respectively impedance, gain, and axial ratio are 1.7%, 3.3% and 0.5%. The pentagonal structure resulted in the bandwith values of 15.67%, 52.16% and 4.11% respectively for impedance, gain, and axial ratio. 


2017 ◽  
Vol 9 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
Mahdi Jalali ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali Sadeghzadeh

Wide-band circularly polarized multi-input multi-output (MIMO) antenna array with a 2 × 4 feed network was proposed for C-band application. Different unique techniques were utilized in the proposed array to enhance the antenna characteristics, such as gain, 3 dB axial ratio bandwidth (ARBW), impedance tuning, and ruinous mutual coupling effects. A miniaturized dual-feed Tai chi-shaped antenna element with a pair of feeding points and a pair of eyebrow-shaped strips was presented for enhancing circular polarization (CP) purity and impedance matching. For a better improvement of CP features, a 2*4 MIMO sequentially rotated (MIMO-SR) feed network was used to achieve broader 3 dB ARBW. Besides, the MIMO feature of the feed network could control the left- and right-handed CP, respectively. Ultimately, specific forms of slot and slit structures were applied onto the top layer of MIMO feed network that provided a high isolation between the radiating elements and array network. Furthermore, the diversity gain (DG) was studied. The extracted measured results illustrated an impedance bandwidth of 3.5–8.2 GHz at port 1 and 3.5–8.3 GHz at port 2 for VWSR < 2 and 3 dB ARBW of 4.6–7.6 GHz at port 1 and 4.6–7.5 GHz at port 2. The peak gain of 9.9 dBi was at 6 GHz.


2016 ◽  
Vol 9 (4) ◽  
pp. 843-850 ◽  
Author(s):  
Dinesh Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
Santanu Dwari ◽  
Ganga Prasad Pandey ◽  
Sandeep Kumar

The design and measurement of reconfigurable circularly polarized capacitive fed microstrip antenna are presented. Small isosceles right angle triangular sections are removed from diagonally opposite corners for the generation of circular polarization (CP) of axial ratio bandwidth of 11.1%. Horizontal slits of different lengths are inserted at the edges of the truncated patch to provide the dual-band CP and by switching PIN diodes across the slits ON and OFF, reconfigurable circularly polarized antenna is realized. The antenna shows dual-band behavior with reconfigurable CP. In order to enhance the operation bandwidth of the antenna, an inclined slot was embedded on the patch along with PIN diodes across the horizontal slits. This proposed antenna gave an impedance bandwidth of 66.61% (ON state) ranging from 4.42 to 8.80 GHz and 68.42% (OFF state) ranging from 4.12 to 8.91 GHz and exhibits dual-frequency CP with PIN diode in OFF state and single-frequency CP with PIN diode in ON state with good axial ratio bandwidth. The axial ratio bandwidth of 4.42, 2.35, and 2.72% is obtained from the antenna. The antenna has a similar radiation pattern in all the three different CP bands and almost constant gain within the bands of CP operation.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Rongling Jian ◽  
Yueyun Chen ◽  
Taohua Chen

In this paper, a novel wideband circularly polarized (CP) millimeter wave (mmWave) microstrip antenna is presented. The proposed antenna consists of a central patch and a microstrip line radiator. The CP radiation is achieved by loading a rectangular slot on the ground plane. To improve the 3-dB axial ratio bandwidth (ARBW), two symmetric parasitic rectangular patches paralleled to a central patch and a slit positioned to the right of the central patch are loaded. To verify this design, the proposed antenna is fabricated with a small antenna of 2.88 × 3.32 × 0.508 mm3. The measured impedance bandwidth (IMBW) for S11<−10 dB of the proposed antenna is 35.97% (22.8 to 33.8 GHz). Meanwhile, the simulation result shows that the 3-dB ARBW is 15.19% (28.77 to 33.5 GHz) within impedance bandwidth, and the peak gain is from 5.08 to 5.22 dBic within 3-dB ARBW. The proposed antenna is suitable for CP applications in the Ka-band.


2020 ◽  
Vol 12 (10) ◽  
pp. 1020-1028
Author(s):  
Chawanat Lerkbangplad ◽  
Alongkorn Namahoot ◽  
Prayoot Akkaraekthalin ◽  
Suramate Chalermwisutkul

AbstractIn this paper, a compact circularly polarized quadrifilar antenna with planar inverted-F antenna (PIFA) elements is presented. The proposed antenna consists of four PIFA elements and a Wilkinson divider-based feed network fabricated on FR-4 substrate (ɛr = 4.4, loss tangent = 0.02, thickness = 1.6 mm). The total size of the antenna is 120 × 120 × 13.2 mm3. Impedance matching with a reflection coefficient <−15 dB and an axial ratio (AR) <3 dB are achieved over the global ultra-high frequency (UHF) radio frequency identification (RFID) frequency band and beyond. The realized gain ranges from 2.25 to 3.75 dBic within the frequency band of interest from 860 to 960 MHz with a directional radiation pattern. The proposed antenna is compact, low-cost and extremely wideband in terms of matching and AR compared to state-of-the-art UHF RFID reader antennas.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dalia M. Elsheakh ◽  
Magdy F. Iskander

This paper describes the design and development of a triband with circularly polarized quasi-Yagi antenna for ka-band and short range wireless communications applications. The proposed antenna consists of an integrated balun-fed printed dipole, parasitic folded dipole and a short strip, and a modified ground plane. The antenna structure, together with the parasitic elements, is designed to achieve circular polarization and triband operating at resonant frequencies of 13.5 GHz, 30 GHz, and 60 GHz. Antenna design was first simulated using HFSS ver.14, and the obtained results were compared with experimental measurements on a prototype developed on a single printed circuit board. Achieved characteristics include −10 dB impedance bandwidth at the desired bands, circular polarization axial ratioAR<3 dB, front to back ratio of 6 dB, gain value of about 4 dBi, and average radiation efficiency of 60%. The paper includes comparison between simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document