Stacked configuration of rectangular and hexagonal patches with shorting pin for circularly polarized wideband performance

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Sanyog Rawat ◽  
K. Sharma

AbstractThe radiation characteristics of a stacked microstrip antenna geometry proficient of providing circular polarization along with wide impedance bandwidth is simulated by using IE3D software and later on this antenna was fabricated on FR-4 substrate with an air gap and testing is done in free space. The feed location, location of applied shorting pin and width of air gap introduced between driver element and parasitically coupled element were optimized to obtain best results. The measured impedance bandwidth better than 31.72% and axial ratio bandwidth close to 1.68% were achieved with the proposed geometry. The simulated and measured results obtained are in good match with each other.

2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
Min Guo ◽  
Ji-Jun Yan ◽  
Shun-Shi Zhong ◽  
Zhu Sun

A new dielectric rod antenna (DRA) is introduced to produce circular polarization (CP) over a wide frequency band without a complex feed network. Along with the simulated results, measured results of the antenna prototype are presented, showing a 3 dB axial ratio (AR) CP bandwidth of 17.7%. The radiation characteristics of the fabricated antenna are also demonstrated showing the measured gain of better than 6.2 dBi. Moreover, the measured impedance bandwidth (VSWR≤2) reaches 20.1%, from 8.75 GHz to 10.7 GHz, while the CP beamwidth (AR≤3 dB) at the central frequency is measured over 120°.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Rongling Jian ◽  
Yueyun Chen ◽  
Taohua Chen

In this paper, a novel wideband circularly polarized (CP) millimeter wave (mmWave) microstrip antenna is presented. The proposed antenna consists of a central patch and a microstrip line radiator. The CP radiation is achieved by loading a rectangular slot on the ground plane. To improve the 3-dB axial ratio bandwidth (ARBW), two symmetric parasitic rectangular patches paralleled to a central patch and a slit positioned to the right of the central patch are loaded. To verify this design, the proposed antenna is fabricated with a small antenna of 2.88 × 3.32 × 0.508 mm3. The measured impedance bandwidth (IMBW) for S11<−10 dB of the proposed antenna is 35.97% (22.8 to 33.8 GHz). Meanwhile, the simulation result shows that the 3-dB ARBW is 15.19% (28.77 to 33.5 GHz) within impedance bandwidth, and the peak gain is from 5.08 to 5.22 dBic within 3-dB ARBW. The proposed antenna is suitable for CP applications in the Ka-band.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Deqiang Yang ◽  
Meng Zou ◽  
Jin Pan

A single-point-fed circularly polarized (CP) rectangular dielectric resonator antenna (DRA) with wide CP bandwidth is presented. By usingTE111andTE113modes of the rectangular DRA, a wideband CP performance is achieved. The coupling slot of the antenna contains a resistor loaded monofilar-spiral-slot and four linear slots. Design concept of the proposed antenna is demonstrated by simulations, and parameter studies are carried out. Prototype of the proposed antenna was fabricated and measured. Good agreement between the simulation and measurement is obtained. The measured impedance bandwidth (|S11|<-10 dB) and 3 dB axial-ratio (AR) bandwidth are 51.4% (1.91–3.23 GHz) and 33.0% (2.15–3.00 GHz), respectively.


Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 41-51
Author(s):  
Alka Verma ◽  
Anil Kumar Singh ◽  
Neelam Srivastava ◽  
Binod Kumar Kanaujia

AbstractIn this article, a new structure comprising of a novel compact slot loaded polarization dependent Electromagnetic Band Gap structure (SLPDEBG), which enhances the performance of circularly polarized rotated square patch antenna by placing SLPDEBG unit cells around it, has been designed. The proposed antenna, having dimensions 0.640 λo x 0.640 λ x 0.0128 λo (λo stands for the free space wavelength at 2.39 GHz), shows that the measured impedance bandwidth and AR bandwidth is 120 MHz and 50 MHz, respectively, with a peak gain of 3.52 dB. Some prominent features of the proposed structure are: front to back ratio of 64, 3 db, beamwidth of 92° at xz-plane and 74° at yz-plane. This prototype antenna finds its application in wireless communication of ISM band. Good performance of the proposed antenna is verified by the close agreement between the simulated and measured results.


2016 ◽  
Vol 78 (5-9) ◽  
Author(s):  
Muhammad Fauzan Edy Purnomo ◽  
Hadi Suyono ◽  
Panca Mudjirahardjo ◽  
Rini Nur Hasanah

The circularly polarized (CP) microstrip antennas, both of singly- and doubly-fed types, possess inherent limitation in gain, impedance and axial-ratio bandwidths. These limitations are caused mainly by the natural resonance of the patch antenna which has a high unloaded Q-factor and the frequency-dependent excitation of two degenerative modes (TM01 and TM10) when using a single feed. Many applications which require circular polarization, large bandwidth, and good performance, especially in the field of wireless communication, are still difficult to be designed by using antenna software. Some consideration to take will include the application target and design specification, the materials to be used, and the method to choose (formula, numerical analysis, etc). This paper explains and analyzes the singly-fed microstrip antenna with circular polarization and large bandwidth. This singly-fed type of microstrip antenna provides certain advantage of requiring no external circular polarizer, e.g. the 900 hybrid, as it only needs to apply some perturbation or modification to a patch radiator with a standard geometry. The design of CP and large-bandwidth microstrip antenna is done gradually, by firstly truncating one tip, then truncating the whole three tips, and finally modifying it into a pentagonal patch structure and adding an air-gap to obtain larger bandwidths of impedance, gain and axial ratio. The last one antenna structure results in a novelty because it is a rare design of antenna which includes all types of bandwidth (impedance, gain, and axial ratio) being simultaneously larger than the origin antenna. The resulted characteristic performance of the 1-tip (one-tip) antenna shows respectively 1.9% of impedance bandwidth, 3.1% of gain bandwidth, and 0.45% of axial-ratio bandwidth. For the 3-tip (three-tip) step, the resulted bandwidths of respectively impedance, gain, and axial ratio are 1.7%, 3.3% and 0.5%. The pentagonal structure resulted in the bandwith values of 15.67%, 52.16% and 4.11% respectively for impedance, gain, and axial ratio. 


Author(s):  
Murari Shaw ◽  
Niranjan Mandal ◽  
Malay Gangopadhyay

Abstract In this paper, a stacked microstrip patch antenna with polarization reconfigurable property has been proposed for worldwide interoperability for microwave access (WiMAX) application. The proposed antenna has two substrate layers: upper and lower layers with two radiating patches connected with the coaxial probe. Without the upper layer the lower square-shaped substrate layer having regular hexagonal radiating patch with probe fed acts as a linear polarized antenna with impedance bandwidth for (S11 ≤ −10 dB) is 370 MHz 10.56% (3.32–3.69 GHz) cover WiMAX (3.4–3.69 GHz) application band. The hexagonal radiating patch is perturbed with an optimum rectangular slot to enhance the impedance bandwidth of the antenna. The lower substrate layer having hexagonal patch with the same probe position is stacked with the upper square-shaped substrate layer with same sized square patch and the upper patch soldered with the coaxial probe. The overall stacked antenna generates a circularly polarized band when the opposite corner of the top square radiating patch of the upper layer is truncated with optimum size. In order to generate another circularly polarized band and to improve the input impedance matching of the stacked antenna, the top radiating patch is perturbed with two slots and a slit. The stacked circularly polarized antenna generates impedance bandwidth of 12.75% (3.23–3.67 GHz) for (S11 ≤ −10 dB) with two circularly polarized bands (3.34–3.37 GHz) and (3.66–3.70 GHz) as per (axial ratio ≤ 3 dB) for WiMAX application. Therefore, the proposed antenna can be used as linearly polarized or dual band circularly polarized according to requirement.


2016 ◽  
Vol 9 (4) ◽  
pp. 843-850 ◽  
Author(s):  
Dinesh Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
Santanu Dwari ◽  
Ganga Prasad Pandey ◽  
Sandeep Kumar

The design and measurement of reconfigurable circularly polarized capacitive fed microstrip antenna are presented. Small isosceles right angle triangular sections are removed from diagonally opposite corners for the generation of circular polarization (CP) of axial ratio bandwidth of 11.1%. Horizontal slits of different lengths are inserted at the edges of the truncated patch to provide the dual-band CP and by switching PIN diodes across the slits ON and OFF, reconfigurable circularly polarized antenna is realized. The antenna shows dual-band behavior with reconfigurable CP. In order to enhance the operation bandwidth of the antenna, an inclined slot was embedded on the patch along with PIN diodes across the horizontal slits. This proposed antenna gave an impedance bandwidth of 66.61% (ON state) ranging from 4.42 to 8.80 GHz and 68.42% (OFF state) ranging from 4.12 to 8.91 GHz and exhibits dual-frequency CP with PIN diode in OFF state and single-frequency CP with PIN diode in ON state with good axial ratio bandwidth. The axial ratio bandwidth of 4.42, 2.35, and 2.72% is obtained from the antenna. The antenna has a similar radiation pattern in all the three different CP bands and almost constant gain within the bands of CP operation.


2017 ◽  
Vol 9 (7) ◽  
pp. 1533-1540 ◽  
Author(s):  
Xi Chen ◽  
Zhen Wei ◽  
Dan Wu ◽  
Long Yang ◽  
Guang Fu

A compact three-dimensional (3D) circularly polarized (CP) microstrip antenna is presented in this paper. The antenna adopts three low-cost printed circuit boards to form an integrated and closed 3D structure, and the radiation patch and the feed patches are etched on the surface of that. A crossed slot is cut on the radiation patch to miniaturize the antenna, and triangular feed patches are introduced to increase the bandwidths. In addition, because of the utilization of a low-loss series feed line, the antenna has a high efficiency of more than 95%. A prototype of the antenna is measured to validate the method. The dimensions of the antenna is 0.064λ × 0.36λ (λ is the wavelength in free space at 1.2 GHz). The results indicate that the impedance bandwidth for voltage standing wave ratio ≤ 2 reaches 23%, and the bandwidth for axial ratio (AR) ≤ 3 dB reaches 10.1%. In the overlap band, the gains are > 4.5dBic. Additionally, the 3 dB beamwidth is more than 114°, and the beamwidth for AR ≤ 3 dB is more than 131° at 1.2 GHz.


2016 ◽  
Vol 9 (3) ◽  
pp. 697-703 ◽  
Author(s):  
Nagendra Kushwaha ◽  
Raj Kumar

This paper presents a high gain, wideband circularly polarized (CP) antenna. High gain of the antenna is achieved by employing a frequency selective surface (FSS) as a reflector. The antenna is a coplanar waveguide-fed structure with a modified L-shaped radiating patch. The unit element of the FSS is formed by connecting two modified dipoles at an angle of 90°. The antenna with reflector has a measured impedance bandwidth of 74.3% (2.2–4.8 GHz) and a 3-dB axial ratio bandwidth (ARBW) of 62% (2.2–4.18 GHz). The maximum boresight gain of the proposed antenna with reflector is 7.1 dB at 3.4 GHz. The radiation patterns of the antenna with the FSS are also measured and compared with simulated patterns. The various aspects of effect of FSS on CP antenna performance are also discussed.


2020 ◽  
Author(s):  
Mohammad Abedian ◽  
Mohsen Khalily ◽  
Vikrant Singh ◽  
Pei Xiao ◽  
Rahim Tafazolli ◽  
...  

Abstract A new single-fed circularly polarized dielectric resonator antenna (CP-DRA) without beam squint is presented. The DRA comprises of an S-shaped dielectric resonator (SDR) with a metalized edge and two rectangular dielectric resonator (RDRs) blocks. A horizontal-section is applied as an extension of the SDR, and a vertical-section is placed in parallel to the metallic edge. A vertical coaxial probe is used to excite the SDR and the vertical RDR blocks through an S-shaped metal element and a small rectangular metal strip, respectively. The two added RDRs that form an L-shaped DR improve the radiation characteristics and compensate for the beam squint errors. A wideband CP performance is achieved due to the excitation of several orthogonal modes such as TEx d11, TEy 1d1, TEz 121, TEy 112, TEx 131, and TEy 311. The experimental results demonstrate an impedance bandwidth of approximately 66:8% (3:71-7:45 GHz) and a 3-dB axial-ratio (AR) bandwidth of about 54:8% (3:72-6:53 GHz) with a stable broadside beam achieving a measured peak gain of about 4:64dBi. Furthermore, a 100% correction in beam squint value from q = 41° to q = 0° with respect to the antenna boresight is achieved.


Sign in / Sign up

Export Citation Format

Share Document