scholarly journals The Interplay between ROS and Ras GTPases: Physiological and Pathological Implications

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Elisa Ferro ◽  
Luca Goitre ◽  
Saverio Francesco Retta ◽  
Lorenza Trabalzini

The members of the RasGTPase superfamily are involved in various signaling networks responsible for fundamental cellular processes. Their activity is determined by their guanine nucleotide-bound state. Recent evidence indicates that some of these proteins may be regulated by redox agents. Reactive oxygen species (ROSs) and reactive nitrogen species (RNSs) have been historically considered pathological agents which can react with and damage many biological macromolecules including DNA, proteins, and lipids. However, a growing number of reports have suggested that the intracellular production of ROS is tightly regulated and that these redox agents serve as signaling molecules being involved in a variety of cell signaling pathways. Numerous observations have suggested that some Ras GTPases appear to regulate ROS production and that oxidants function as effector molecules for the small GTPases, thus contributing to their overall biological function. Thus, redox agents may act both as upstream regulators and as downstream effectors of Ras GTPases. Here we discuss current understanding concerning mechanisms and physiopathological implications of the interplay between GTPases and redox agents.

2002 ◽  
Vol 13 (4) ◽  
pp. 1215-1226 ◽  
Author(s):  
Jayesh C. Patel ◽  
Alan Hall ◽  
Emmanuelle Caron

Phagocytosis is the process whereby cells direct the spatially localized, receptor-driven engulfment of particulate materials. It proceeds via remodeling of the actin cytoskeleton and shares many of the core cytoskeletal components involved in adhesion and migration. Small GTPases of the Rho family have been widely implicated in coordinating actin dynamics in response to extracellular signals and during diverse cellular processes, including phagocytosis, yet the mechanisms controlling their recruitment and activation are not known. We show herein that in response to ligation of Fc receptors for IgG (FcγR), the guanine nucleotide exchange factor Vav translocates to nascent phagosomes and catalyzes GTP loading on Rac, but not Cdc42. The Vav-induced Rac activation proceeds independently of Cdc42 function, suggesting distinct roles for each GTPase during engulfment. Moreover, inhibition of Vav exchange activity or of Cdc42 activity does not prevent Rac recruitment to sites of particle attachment. We conclude that Rac is recruited to Fcγ membrane receptors in its inactive, GDP-bound state and that Vav regulates phagocytosis through subsequent catalysis of GDP/GTP exchange on Rac.


2021 ◽  
Author(s):  
Jacob I. Mardick ◽  
Neal R. Rasmussen ◽  
Bruce Wightman ◽  
David J. Reiner

ABSTRACTRas is the most commonly mutated oncogene in humans and uses three oncogenic effectors: Raf, PI3K, and RalGEF activation of Ral. Understanding the importance of RalGEF>Ral signaling in cancer is hampered by the paucity of knowledge about their function in animal development, particularly in cell movements. We found that mutations that disrupt function of RalGEF or Ral enhance migration phenotypes of mutations in genes with established roles in cell migration. We used as a model the migration of the canal associated neurons (CANs), and validated our results in HSN cell migration, neurite guidance, and general animal locomotion. These functions of RalGEF and Ral are specific to their control of Ral signaling output rather than other published functions of these proteins. In this capacity Ral functions cell autonomously as a permissive developmental signal. In contrast, we observed Ras, the canonical activator of RalGEF>Ral signaling in cancer, to function as an instructive signal. Furthermore, we unexpectedly identified a function for the close Ras relative, Rap1, consistent with activation of RalGEF>Ral. These studies define functions of RalGEF>Ral, Rap1 and Ras signaling in morphogenetic processes that fashion the nervous system. We have also defined a model for studying how small GTPases partner with downstream effectors. Taken together, this analysis defines novel molecules and relationships in signaling networks that control cell movements during development of the nervous system.


2020 ◽  
Vol 117 (12) ◽  
pp. 6540-6549
Author(s):  
Urban Bezeljak ◽  
Hrushikesh Loya ◽  
Beata Kaczmarek ◽  
Timothy E. Saunders ◽  
Martin Loose

The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell.


2006 ◽  
Vol 81 (2) ◽  
pp. 558-567 ◽  
Author(s):  
George A. Belov ◽  
Nihal Altan-Bonnet ◽  
Gennadiy Kovtunovych ◽  
Catherine L. Jackson ◽  
Jennifer Lippincott-Schwartz ◽  
...  

ABSTRACT Infection of cells with poliovirus induces a massive intracellular membrane reorganization to form vesicle-like structures where viral RNA replication occurs. The mechanism of membrane remodeling remains unknown, although some observations have implicated components of the cellular secretory and/or autophagy pathways. Recently, we showed that some members of the Arf family of small GTPases, which control secretory trafficking, became membrane-bound after the synthesis of poliovirus proteins in vitro and associated with newly formed membranous RNA replication complexes in infected cells. The recruitment of Arfs to specific target membranes is mediated by a group of guanine nucleotide exchange factors (GEFs) that recycle Arf from its inactive, GDP-bound state to an active GTP-bound form. Here we show that two different viral proteins independently recruit different Arf GEFs (GBF1 and BIG1/2) to the new structures that support virus replication. Intracellular Arf-GTP levels increase ∼4-fold during poliovirus infection. The requirement for these GEFs explains the sensitivity of virus growth to brefeldin A, which can be rescued by the overexpression of GBF1. The recruitment of Arf to membranes via specific GEFs by poliovirus proteins provides an important clue toward identifying cellular pathways utilized by the virus to form its membranous replication complex.


2018 ◽  
Vol 116 (1) ◽  
pp. 158-167 ◽  
Author(s):  
Rui Huang ◽  
Zev A. Ripstein ◽  
John L. Rubinstein ◽  
Lewis E. Kay

p97 is an essential hexameric AAA+ ATPase involved in a wide range of cellular processes. Mutations in the enzyme are implicated in the etiology of an autosomal dominant neurological disease in which patients are heterozygous with respect to p97 alleles, containing one copy each of WT and disease-causing mutant genes, so that, in vivo, p97 molecules can be heterogeneous in subunit composition. Studies of p97 have, however, focused on homohexameric constructs, where protomers are either entirely WT or contain a disease-causing mutation, showing that for WT p97, the N-terminal domain (NTD) of each subunit can exist in either a down (ADP) or up (ATP) conformation. NMR studies establish that, in the ADP-bound state, the up/down NTD equilibrium shifts progressively toward the up conformation as a function of disease mutant severity. To understand NTD functional dynamics in biologically relevant p97 heterohexamers comprising both WT and disease-causing mutant subunits, we performed a methyl-transverse relaxation optimized spectroscopy (TROSY) NMR study on a series of constructs in which only one of the protomer types is NMR-labeled. Our results show positive cooperativity of NTD up/down equilibria between neighboring protomers, allowing us to define interprotomer pathways that mediate the allosteric communication between subunits. Notably, the perturbed up/down NTD equilibrium in mutant subunits is partially restored by neighboring WT protomers, as is the two-pronged binding of the UBXD1 adaptor that is affected in disease. This work highlights the plasticity of p97 and how subtle perturbations to its free-energy landscape lead to significant changes in NTD conformation and adaptor binding.


2021 ◽  
Vol 134 (14) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Magdalena Cardenas-Rodriguez is first author on ‘ Genetic compensation for cilia defects in cep290 mutants by upregulation of cilia-associated small GTPases’, published in JCS. Magdalena is a research assistant in the lab of Jose Luis Badano at Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay, investigating the cellular processes that are altered in cilia-related human diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Flurina Boehi ◽  
Patrick Manetsch ◽  
Michael O. Hottiger

AbstractSignaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.


Author(s):  
Fabienne Podieh ◽  
Peter L. Hordijk

Cullin3-based ubiquitin E3 ligases induce ubiquitination of substrates leading to their proteasomal or lysosomal degradation. BTB proteins serve as adaptors by binding to Cullin3 and recruiting substrate proteins, which enables specific recognition of a broad spectrum of targets. Hence, Cullin3 and its adaptors are involved in myriad cellular processes and organ functions. Cullin3-based ubiquitin E3 ligase complexes target small GTPases of the Rho subfamily, which are key regulators of cytoskeletal dynamics and cell adhesion. In this mini review, we discuss recent insights in Cullin3-mediated regulation of Rho GTPases and their impact on cellular function and disease. Intriguingly, upstream regulators of Rho GTPases are targeted by Cullin3 complexes as well. Thus, Rho GTPase signaling is regulated by Cullin3 on multiple levels. In addition, we address current knowledge of Cullin3 in regulating vascular function, focusing on its prominent role in endothelial barrier function, angiogenesis and the regulation of blood pressure.


Antibodies ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Laura Keller ◽  
Nicolas Bery ◽  
Claudine Tardy ◽  
Laetitia Ligat ◽  
Gilles Favre ◽  
...  

RHO (Ras HOmologous) GTPases are molecular switches that activate, in their state bound to Guanosine triphosphate (GTP), key signaling pathways, which involve actin cytoskeleton dynamics. Previously, we selected the nanobody RH12, from a synthetic phage display library, which binds the GTP-bound active conformation of RHOA (Ras Homologous family member A). However, when expressed as an intracellular antibody, its blocking effect on RHO signaling led to a loss of actin fibers, which in turn affected cell shape and cell survival. Here, in order to engineer an intracellular biosensor of RHOA-GTP activation, we screened the same phage nanobody library and identified another RHO-GTP selective intracellular nanobody, but with no apparent toxicity. The recombinant RH57 nanobody displays high affinity towards GTP-bound RHOA/B/C subgroup of small GTPases in vitro. Intracellular expression of the RH57 allowed selective co-precipitation with the GTP-bound state of the endogenous RHOA subfamily. When expressed as a fluorescent fusion protein, the chromobody GFP-RH57 was localized to the inner plasma membrane upon stimulation of the activation of endogenous RHO. Finally, the RH57 nanobody was used to establish a BRET-based biosensor (Bioluminescence Resonance Energy Transfer) of RHO activation. The dynamic range of the BRET signal could potentially offer new opportunities to develop cell-based screening of RHOA subfamily activation modulators.


2020 ◽  
Vol 4 (5) ◽  
Author(s):  
Nooshin Koolaji ◽  
Balakrishnan Shammugasamy ◽  
Aaron Schindeler ◽  
Qihan Dong ◽  
Fariba Dehghani ◽  
...  

ABSTRACT Citrus fruit and in particular flavonoid compounds from citrus peel have been identified as agents with utility in the treatment of cancer. This review provides a background and overview regarding the compounds found within citrus peel with putative anticancer potential as well as the associated in vitro and in vivo studies. Historical studies have identified a number of cellular processes that can be modulated by citrus peel flavonoids including cell proliferation, cell cycle regulation, apoptosis, metastasis, and angiogenesis. More recently, molecular studies have started to elucidate the underlying cell signaling pathways that are responsible for the flavonoids’ mechanism of action. These growing data support further research into the chemopreventative potential of citrus peel extracts, and purified flavonoids in particular. This critical review highlights new research in the field and synthesizes the pathways modulated by flavonoids and other polyphenolic compounds into a generalized schema.


Sign in / Sign up

Export Citation Format

Share Document