scholarly journals Diversity and Nesting Substrates of Stingless Bees (Hymenoptera, Meliponina) in a Forest Remnant

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Estefane Nascimento Leoncini Siqueira ◽  
Bruno Ferreira Bartelli ◽  
André Rosalvo Terra Nascimento ◽  
Fernanda Helena Nogueira-Ferreira

Stingless bees are abundant and diverse key actors in several plant-pollinator networks in the neotropics, but little is known about their natural history and ecology. This study aims to contribute to knowledge about the diversity and dispersion of stingless bees and discusses the importance of nesting substrates. It was carried out in the Araguari river valley in Minas Gerais, Brazil, where a nest site survey was conducted in an area of 100 ha during 11 alternate months from 2006 to 2008, for a total of 1,200 observation hours. Sixty-nine nests were found, belonging to 12 genera and 20 different species. Nests ofMelipona rufiventriswere by far the most abundant. Stingless bees nested more frequently in hollows of live trees (64%), and 11 different substrates were identified. Seventeen plant species were used as nesting substrates andAnadenanthera macrocarpa(Fabaceae) was the main host, encompassing 23% of the surveyed nests. The area studied is important for the maintenance of stingless bees because it provides nesting sites for them. Without nesting sites the reproductive division of colonies is compromised, affecting the nests' survival.

2020 ◽  
Vol 21 ◽  
Author(s):  
Carlos Roberto da Costa Macedo ◽  
Italo de Souza Aquino ◽  
Péricles de Farias Borges ◽  
Alex da Silva Barbosa ◽  
Geovergue Rodrigues de Medeiros

Abstract Native bees, besides excellent producers of honey, lend a great legacy to humanity through their ability to pollinate plants and the consequent preservation of ecosystems. In this interspecific relation, bees are benefited by plant species by the provision of food (nectar and pollen), besides using their branches and trunks for lodging. However, the anthropogenic action has jeopardized the survival of stingless bees, causing irreversible environmental damage in the preservation of natural resources. This study aimed to identify the nesting habits of native bees under natural conditions. Random trails in the Curimataú micro-region of Paraíba allowed identifying nesting sites of indigenous species in their natural habitat. Sixty honeycomb nests were identified in 12 different plant species, being Commiphora leptophloeos the most preferred host (46.66%), with 55% of the entrance holes pointed to magnetic orientations between the Northeast and Northwest; a greater choice by host trees (85%); preference for nesting in host plants with a circumference of 0.98 m in diameter, entrance hole of nests of 7.77 mm in diameter, and height from the ground of 1.52 m. The obtained data showed little variety of stingless bee species in the Curimataú region of Paraíba, especially Melipona subnitida. The species Melipona asilvae, Melipona scutellaris, Partamona seridoenses, and Plebeia sp. should receive special attention not to become extinct in this region.


2005 ◽  
Vol 119 (2) ◽  
pp. 245 ◽  
Author(s):  
A. L. Parachnowitsch ◽  
E. Elle

The Garry Oak Ecosystem (GOE) is a fragmented and endangered ecosystem in Canada, and is currently the focus of conservation and restoration efforts in British Columbia. However, little is known about the basic biology of GOE forbs, or their relationships with pollinating insects. We monitored wildflowers and their insect visitors in 25 quadrats within a 25 × 25 metre plot, located in a fragment of the GOE near Duncan, British Columbia, for six weeks (the majority of the flowering period). Overall, 21 native and non-native forb species flowered in our quadrats during the survey, and we observed an additional six forb species flowering outside of our quadrats. Eight forbs were visited within quadrats by a total of 13 insect taxa, identified to morphospecies. Visits by eight additional morphospecies were observed outside of the quadrats. In general, visitation was low; however, most insect morphospecies were observed visiting more than one plant species, and most plant species were visited by more than one insect morphospecies, suggesting that pollination may be generalised in this community. A Chi-squared analysis indicated that insect visitation was not proportional to the relative abundance of forbs, with higher than expected visitation to Common camas (Camassia quamash), and no observed visits to 11 species, most with very small (putatively unattractive) flowers. The most frequent insect visitor was the introduced Honeybee, Apis mellifera, followed by native mason bees (Osmia spp.) and mining bees (Andrena spp.). Our observations provide baseline data for future, detailed studies that should investigate the importance of plant-pollinator mutualisms for sustainability of populations and communities in this rare ecosystem.


1978 ◽  
Vol 110 (3) ◽  
pp. 301-318 ◽  
Author(s):  
K. W. Richards

AbstractThe niche breadth and overlap in nesting preferences of 15 species of bumble bees were investigated in Alberta. Some of the factors that influence the distribution of nesting sites and abundance of species and permit the species to coexist in sympatry are discussed. Artificial domiciles were used as potential nesting sites. Some species were specialists in terms of nest site selection while others were generalists. The few natural nests found, the long periods spent by queens searching for nests, the high frequency of usurpation or direct interference and death of intruders, and the frequency of high niche overlap values between species are evidence that nesting sites are limited and are incompletely partitioned among the coexisting species. Usurpation also demonstrates the competition among individuals and species. Phenological differences in nest establishment influence the competition among the species. Camouflaging of tunnels presumably reduces the intensity of usurpation and protects queens and the brood from inclement weather and from social parasites (e.g., Psithyrus) and predators.


2017 ◽  
Vol 284 (1862) ◽  
pp. 20171707 ◽  
Author(s):  
Anton Pauw ◽  
Belinda Kahnt ◽  
Michael Kuhlmann ◽  
Denis Michez ◽  
Graham A. Montgomery ◽  
...  

Adaptation is evolution in response to natural selection. Hence, an adaptation is expected to originate simultaneously with the acquisition of a particular selective environment. Here we test whether long legs evolve in oil-collecting Rediviva bees when they come under selection by long-spurred, oil-secreting flowers. To quantify the selective environment, we drew a large network of the interactions between Rediviva species and oil-secreting plant species. The selective environment of each bee species was summarized as the average spur length of the interacting plant species weighted by interaction frequency. Using phylogenetically independent contrasts, we calculated divergence in selective environment and evolutionary divergence in leg length between sister species (and sister clades) of Rediviva . We found that change in the selective environment explained 80% of evolutionary change in leg length, with change in body size contributing an additional 6% of uniquely explained variance. The result is one of four proposed steps in testing for plant–pollinator coevolution.


Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 412 ◽  
Author(s):  
Marisol Amaya-Márquez ◽  
Sergio Tusso ◽  
Juan Hernández ◽  
Juan Darío Jiménez ◽  
Harrington Wells ◽  
...  

Olfactory learning and floral scents are co-adaptive traits in the plant–pollinator relationship. However, how scent relates to cognition and learning in the diverse group of Neotropical stingless bees is largely unknown. Here we evaluated the ability of Melipona eburnea to be conditioned to scent using the proboscis extension reflex (PER) protocol. Stingless bees did not show PER while harnessed but were able to be PER conditioned to scent when free-to-move in a mini-cage (fmPER). We evaluated the effect of: 1) unconditioned stimulus (US) reward, and 2) previous scent–reward associations on olfactory learning performance. When using unscented-US, PER-responses were low on day 1, but using scented-US reward the olfactory PER-response increased on day 1. On day 2 PER performance greatly increased in bees that previously had experienced the same odor and reward combination, while bees that experienced a different odor on day 2 showed poor olfactory learning. Bees showed higher olfactory PER conditioning to guava than to mango odor. The effect of the unconditioned stimulus reward was not a significant factor in the model on day 2. This indicates that olfactory learning performance can increase via either taste receptors or accumulated experience with the same odor. Our results have application in agriculture and pollination ecology.


Hoehnea ◽  
2021 ◽  
Vol 48 ◽  
Author(s):  
Israel Henrique Buttner Queiroz ◽  
Ricardo Augusto Gorne Viani ◽  
Renata Sebastiani

RESUMO The permanence of a plant species in a forest community depends on its number of specimens and its distribution in the various sizes of individuals, including seedlings. Seedlings and seeds from a forest remnant in Pirassununga were collected and analyzed for the degree of threat, possible height of the adult individual, occurrence in phytophysiognomies and region and morphological aspects. 116 seedlings available in 39 morphospecies were collected, and the germination of collected seeds provided 40 species. The present study brought news regarding the morphological aspects, the identification and the distribution of seedlings of tree species in a riparian forest area in the Mogi Guaçu River Basin and in the State of São Paulo.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Michael JM Harrap ◽  
Sean A Rands ◽  
Natalie Hempel de Ibarra ◽  
Heather M Whitney

Pollinating insects utilise various sensory cues to identify and learn rewarding flower species. One such cue is floral temperature, created by captured sunlight or plant thermogenesis. Bumblebees, honeybees and stingless bees can distinguish flowers based on differences in overall temperature between flowers. We report here that floral temperature often differs between different parts of the flower creating a temperature structure or pattern. Temperature patterns are common, with 55% of 118 plant species thermographed, showing within-flower temperature differences greater than the 2°C difference that bees are known to be able to detect. Using differential conditioning techniques, we show that bumblebees can distinguish artificial flowers differing in temperature patterns comparable to those seen in real flowers. Thus, bumblebees are able to perceive the shape of these within-flower temperature patterns. Floral temperature patterns may therefore represent a new floral cue that could assist pollinators in the recognition and learning of rewarding flowers.


2019 ◽  
Vol 41 (2) ◽  
pp. 147 ◽  
Author(s):  
Mariana Tadey

Introduced livestock may indirectly affect bird species by decreasing vegetation structure and affecting the selection of nesting sites. This is especially true for birds that use shrubs as the raw material for nest construction or for nest placement. Nesting in inadequate supporting structures or the use of inadequate raw material for nest building may increase nest vulnerability (e.g. increasing structure weakness, falling and nest exposure to predation). Accordingly, bird species show a great variation in the selectivity of nesting sites and the raw material they use. Furnariidae family members exhibit an extraordinary diversity in nest placement and structure, which allows them to survive in different arid environments. I report here on a study of nest site selection of two common furnariid species, Leptasthenura aegithaloides and Pseudoseisura gutturalis, across a grazing gradient composed by nine independent paddocks within the same arid habitat. These species use large closed-nests (>40 cm long) built with thorny branches, placed on spiny shrubs. I measured nest abundance and supporting plants characteristics, vegetation structure, browsing intensity and compared the plants selected by the birds with the surrounding vegetation. These bird species used only few plant species for nest building and location. Livestock significantly reduced vegetation cover of the species used to build and place the nests, affecting nest site selection and reducing nest abundance. As livestock density increased, both species selected aggregated plants and the tallest plants for nesting, which may increase nest exposure. Therefore, livestock may indirectly affect nest-site selection of birds ultimately affecting their nesting ecology. This work illustrates how domestic livestock, through decreasing plant cover, may affect native biota with consequences on key species within an ecosystem.


Ecosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Pati Vitt ◽  
Kayri Havens ◽  
Claudia L. Jolls ◽  
Tiffany M. Knight

2017 ◽  
Vol 57 (32) ◽  
pp. 413 ◽  
Author(s):  
Bárbara Araújo Ribeiro Bergamini ◽  
Leonardo Lima Bergamini ◽  
Benedito Baptista dos Santos ◽  
Walter Santos de Araújo

In the present paper we investigated the insect gall distribution along savanna and forest sites in the Floresta Nacional de Silvânia, Goiás, Brazil. The insect gall fauna was surveyed bi-monthly between December 2009 and June 2010. In total we found 186 insect gall morphotypes, distributed on 35 botanical families and 61 plant species. Ninety-nine insect gall morphotypes were recorded in the forest and 87 in the savanna. Gall-inducing insects belonged to Coleoptera, Diptera, Hemiptera, Lepidoptera and Thysanoptera, with highlight to Cecidomyiidae (Diptera) that induced 34.1% of the gall morphotypes. Parasitoids and/or inquilines were recorded in 38 morphotypes, mainly from the families Eulophidae, Eurytomidae and Torymidae (Hymenoptera). Fabaceae was the botanical family with the greatest richness of galls, followed by Asteraceae and Sapindaceae, being Protium (Burseraceae), Siparuna (Siparunaceae) and Serjania (Sapindaceae) the main host genera. This is the first systematic survey of insect galls realized in the Flona-Silvânia, which result in six plant species are recorded for the first time in Brazil as host of insect galls.


Sign in / Sign up

Export Citation Format

Share Document