scholarly journals Against Lung Cancer Cells: To Be, or Not to Be, That Is the Problem

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Naoko Okumura ◽  
Hitomi Yoshida ◽  
Yasuko Kitagishi ◽  
Yuri Nishimura ◽  
Shio Iseki ◽  
...  

Tobacco smoke and radioactive radon gas impose a high risk for lung cancer. The radon-derived ionizing radiation and some components of cigarette smoke induce oxidative stress by generating reactive oxygen species (ROS). Respiratory lung cells are subject to the ROS that causes DNA breaks, which subsequently bring about DNA mutagenesis and are intimately linked with carcinogenesis. The damaged cells by oxidative stress are often destroyed through the active apoptotic pathway. However, the ROS also perform critical signaling functions in stress responses, cell survival, and cell proliferation. Some molecules enhance radiation-induced tumor cell killing via the reduction in DNA repair levels. Hence the DNA repair levels may be a novel therapeutic modality in overcoming drug resistance in lung cancer. Either survival or apoptosis, which is determined by the balance between DNA damage and DNA repair levels, may lender the major problems in cancer therapy. The purpose of this paper is to take a closer look at risk factor and at therapy modulation factor in lung cancer relevant to the ROS.

2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Meng-Hsuan Cheng ◽  
Hung-Ling Huang ◽  
Yen-You Lin ◽  
Kuan-Hao Tsui ◽  
Pei-Chin Chen ◽  
...  

Lung cancer is the leading cause of cancer deaths in the world, with a five-year survival rate of less than 30%. Clinically effective chemotherapeutic treatments at the initial stage may eventually face the dilemma of no drug being effective due to drug resistance; therefore, finding new effective drugs for lung cancer treatment is a necessary and important issue. Compounds capable of further increasing the oxidative stress of cancer cells are considered to have anticancer potential because they possessed the ability to induce apoptosis. This study mainly investigated the effects of BA6 (heteronemin), the marine sponge sesterterpene, on lung cancer cell apoptosis, via modulation of mitochondrial reactive oxygen species (mtROS) and oxidative phosphorylation (OXPHOS). BA6 has cellular cytotoxic activities against a variety of cancer cell lines, but it has no effect on nontumor cells. The BA6-treated lung cancer cells show a significant increase in both cellular ROS and mtROS, which in turn caused the loss of mitochondrial membrane potential (MMP). The increase of oxidative stress in lung cancer cells treated with BA6 was accompanied by a decrease in the expression of antioxidant enzymes Cu/Zn SOD, MnSOD, and catalase. In addition, OXPHOS performed in the mitochondria and glycolysis in the cytoplasm were inhibited, which subsequently reduced downstream ATP production. Pretreatment with mitochondria-targeted antioxidant MitoTEMPO reduced BA6-induced apoptosis through the mitochondria-dependent apoptotic pathway, which was accompanied by increased cell viability, decreased mtROS, enhanced MMP, and suppressed expression of cleaved caspase-3 and caspase-9 proteins. In conclusion, the results of this study clarify the mechanism of BA6-induced apoptosis in lung cancer cells via the mitochondrial apoptotic pathway, suggesting that it is a potentially innovative alternative to the treatment of human lung cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Elena Yushkova

The study of the genetic basis of the manifestation of radiation-induced effects and their transgenerational inheritance makes it possible to identify the mechanisms of adaptation and possible effective strategies for the survival of organisms in response to chronic radioactive stress. One persistent hypothesis is that the activation of certain genes involved in cellular defense is a specific response of the cell to irradiation. There is also data indicating the important role of transposable elements in the formation of radiosensitivity/radioresistance of biological systems. In this work, we studied the interaction of the systems of hobo transposon activity and DNA repair in the cell under conditions of chronic low-dose irradiation and its participation in the inheritance of radiation-induced transgenerational instability in Drosophila. Our results showed a significant increase of sterility and locus-specific mutability, a decrease of survival, fertility and genome stability (an increase the frequency of dominant lethal mutations and DNA damage) in non-irradiated F1/F2 offspring of irradiated parents with dysfunction of the mus304 gene which is responsible for excision and post-replicative recombination repair and repair of double-stranded DNA breaks. The combined action of dysfunction of the mus309 gene and transpositional activity of hobo elements also led to the transgenerational effects of irradiation but only in the F1 offspring. Dysfunction of the genes of other DNA repair systems (mus101 and mus210) showed no visible effects inherited from irradiated parents subjected to hobo transpositions. The mei-41 gene showed specificity in this type of interaction, which consists in its higher efficiency in sensing events induced by transpositional activity rather than irradiation.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Bo Ye ◽  
Ning Hou ◽  
Lu Xiao ◽  
Haodong Xu ◽  
Faqian Li

Backgrounds: DNA damage occurs in cardiomyocytes during normal cellular metabolism and is significantly increased under cardiac stresses. How cardiomyocytes repair their DNA damage, especially DNA double strand breaks (DSBs), remains undetermined. We assessed DSBs caused by oxidative stress. More importantly, we investigated the spatiotemporal dynamics of DNA repair protein assembly/disassembly in DNA damage sites. Methods: Cultured neonatal rat cardiomyocytes were treated with different doses of hydrogen peroxide (H2O2) for 30 minutes to assess DNA damage response (DDR). To investigate the dynamics of DDR, cells were treated with 200 uM H2O2 and followed up to 72 hours. DSBs were evaluated by counting DNA damage foci after staining with antibody against histone H2AX phosphorylation at serine 139 (g-H2AX). The dynamics and posttranslational modification of DNA repair proteins were determined by Western blotting, immunolabeling, and confocal microscopy. Result: g-H2AX was proportionally increased to H2O2 dosage. Discrete nuclear g-H2AX foci were seen 30 minutes after hydrogen peroxide treatment with 50 uM, but became pannuclear when H2O2 was above 400 uM. At 200 uM of hydrogen peroxide, g-H2AX started to increase at 15 minutes and reached to highest levels at 60 minutes with up to 70 nuclear foci, started to decline at 2 hours, and returned to basal levels at 24 hours. DDR transducer kinase, ataxia telangiectasia mutated (ATM) was activated at 5 minutes with increased phosphorylation at serine 1981 (pATM) which started to decrease at 24 hours, but remained elevated up to 48 hours. Another DDR transducer kinase, ATM and Rad3-related (ATR) showed a biphasic activation at 30 minutes and 8 hours. ATM and ATR colocalized with g-H2AX. DNA damage mediator proteins such as MRN complex and p53BP1 were also recruited to sites of DNA damage at g-H2AX foci. Conclusions: DSBs and their repair have emerged as a new frontier of stress responses. Newly developed methods for studying g-H2AX and DNA repair protein dynamics can be explored to investigate DDR to oxidative stress in cardiomyocytes.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Y Akdemir ◽  
M Akpolat ◽  
O Elmas ◽  
M Kececi ◽  
B Cetinkaya

Abstract Study question Is capsaicin effective in preventing radiation induced ovarian follicle loss and premature ovarian failure (POF) in rats? Summary answer Capsaicin pre-treatment before radiotherapy restores especially primordial follicle pool, inhibits atresia of ovarian follicles, may be an acceptable therapeutic modality to prevent radiation induced POF. What is known already Ionizing radiation exposure to pelvic area induces inflammation, oxidative stress, follicular atresia and apoptosis; leading to POF. Phytochemicals were used in animal studies to prevent radiotherapy induced POF because of their antioxidant and anti-inflammatory properties however their potential radio-protective effects in human ovarian follicles are not clear. Capsaicin is the active compound of hot peppers and has anti-inflammatory and antioxidant properties. It was found that low dose capsaicin stimulated ovarian follicular development and proliferation of granulosa cells, inhibited apoptosis of ovarian follicles in pre-pubertal rat ovaries. However, no data exists on radio-protective effects of capsaicin on ovarian follicles. Study design, size, duration Twenty-four young adult Wistar albino female rats were housed under standard conditions (20 ± 1 0C room temperature, 60 ± 10% humidity, and a 12/12-h light/dark cycle) in regular cages and allowed free access to food and water. After 10 days of subcutaneous capsaicin 0,5 mg/kg/day or placebo treatment, animals exposed to total body irradiation of 8.3 Gy using a linear accelerator. Treatment continued for 1 day after irradiation. Participants/materials, setting, methods Rats were randomly divided into four groups: (1) control: non-irradiated rats were injected placebo; (2) capsaicin: non-irradiated rats were injected capsaicin; (3) radiation only (IR): rats were injected placebo before exposure to a single dose of 8.3-Gy whole body radiation; (4) Radiation-capsaicin (IR+CAP): rats were injected capsaicin prior to whole body irradiation and continued for 1 day after irradiation. Rats were sacrificed, blood samples were obtained for biochemical investigations. Ovaries were dissected for histopathological evaluation. Main results and the role of chance Radiation triggered oxidative stress, increased ovarian inflammation, increased follicular apoptosis and diminished ovarian follicle pool. Capsaicin was significantly ameliorated; oxidative stress by decreasing serum total oxidant status, oxidative stress index, disulfide, and malondialdehyde levels (p ≤ 0.001 both); ovarian inflammatory status by decreasing expressions of TNF-α, IL–1β, poly ADP-ribose polymerase–1 (PARP–1) (p = 0.002 both); apoptosis by decreasing expressions of active caspase–3 and p53 (p = 0.015 and p = 0.002 respectively); follicle counts by increasing primordial follicles and decreasing apoptotic follicles (p ≤ 0.001 both) in rats when administered before radiation exposure. Results of our study confirmed previously reported pro-proliferative and anti-apoptotic properties of capsaicin on ovarian follicles. These beneficial effects of capsaicin are demonstrated for the first time on ionizing radiation exposed rat ovaries. Limitations, reasons for caution Present study is a in-vivo rat study and other preclinical studies are needed to confirm our findings before moving forward to human trials. Radio-protective effects of capsaicin on rat ovarian follicles were demonstrated only in short term. Long term effects of capsaicin on folliculogenesis, fertilization and fecundity should be investigated. Wider implications of the findings: Preserving fertility is one of the main goals of successful radiotherapy in terms of quality of life for oncological or hematological diseases. Capsaicin treatment before radiotherapy may be an acceptable therapeutic modality to prevent radiation induced POF and has potential to utilize in clinical application in terms of fertility preservation. Trial registration number 218S876/2019


Sign in / Sign up

Export Citation Format

Share Document