scholarly journals Differential surface characterizations of cotton fibers coated with TiO2 and ZnO nanoparticles for nano-based analysis of fabrics

2021 ◽  
Vol 16 ◽  
pp. 155892502110438
Author(s):  
Parshuram Singh ◽  
Sapna Balayan ◽  
Rajendra Kumar Sarin ◽  
Utkarsh Jain

Fibers are the unit component for product development. They can be divided into two types: synthetic and natural fibers. Recently, emerging nanotechnology has played a vital role in advancing next-generation fabrics. The nanomaterials provide several unique properties such as higher conductivity, self-cleaning, water-resistant, and others. Owing to their advanced properties, the fabrics are being developed by coating and integrating with nanomaterials. Therefore, in the presented work two cotton samples were modified with titanium dioxide (TiO2) and zinc oxide (ZnO). These samples were further examined under various techniques including scanning electron microscopy (SEM), UV-visible spectroscopy, X-ray fluorescence (XRF), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, these samples were evaluated at varying wavelengths with UV light and the obtained results demonstrated that the nano-coated fiber samples can be differentiated at 365 nm.

2016 ◽  
Vol 839 ◽  
pp. 136-141
Author(s):  
Arrak Klinbumrung ◽  
Chalermchai Pilapong ◽  
Tawat Suriwong

Antimony sulfide (Sb2S3) nanostructure was synthesized using a 600 W microwave irradiation technique. The precursors including Sb(CH3CO2)3 and Na2S2O3.5H2O were dissolved into 50 mL ethylene glycol (EG) solution with containing 0 and 1 g of hydroxyethyl cellulose (HEC). Phase, morphology and optical properties of the as-synthesized products were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and photoluminescence (PL). Energy band gap of Sb2S3 nanostructure exhibits the value of 1.90 and 2.06 eV for synthesizing condition with and without HEC containing, respectively.


2014 ◽  
Vol 936 ◽  
pp. 123-126
Author(s):  
Shuai Chen ◽  
Yun Ze Long ◽  
Hong Di Zhang ◽  
Shu Liang Liu ◽  
Ling Zhi Liu ◽  
...  

Ultrathin indium oxide (In2O3) microtubes were successfully fabricated by electrospinning, magnetron sputtering and followed calcination. The hollow In2O3tubes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-visible spectroscopy. Outer diameter of the microtubes was in the range of 700-900 nm, and inner diameter was about 400-600 nm. Optoelectronic properties of the In2O3tubes were investigated by irradiation of UV light with different wavelengths (254, 308 and 365 nm). It was found that the In2O3microtubes had a fast and strong response to UV irradiation.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
M. Amutha ◽  
P. Lalitha ◽  
M. Jannathul Firdhouse

Nanosilver was synthesized using the aqueous solution of solvent extracts of leaf and stem ofKedrostis foetidissima. Three different methods of formation of silver nanoparticles such as reaction at (i) room temperature, (ii) higher temperature, and (iii) sonication were employed in the present study. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, X-ray diffractometer, Scherrer’s formula, scanning electron microscopy, and FTIR analysis.


MRS Advances ◽  
2020 ◽  
Vol 5 (62) ◽  
pp. 3273-3282
Author(s):  
I. Cosme-Torres ◽  
M.G. Macedo-Miranda ◽  
S.M. Martinez-Gallegos ◽  
J.C. González-Juárez ◽  
G. Roa-Morales ◽  
...  

AbstractThe heterogeneous catalyst HTCMgFe was used in the degradation of the IC, through the heterogeneous photo-fenton treatment, this material in combination with H2O2 and UV light degraded the dye in 30 min at pH 3. As the amount of HTCMgFe increases the degradation it was accelerated because there are more active catalytic sites of Fe2+ on the surface of the material, which generates a greater amount of •OH radicals. The HTCMgFe was characterized by infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray energy dispersive elemental analysis (EDS). The UV-vis spectrum shows that the absorption bands belonging to the chromophore group of the IC disappear as the treatment time passes, indicating the degradation of the dye.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540028 ◽  
Author(s):  
Mali Ding ◽  
Jie Han ◽  
Wei Qiu ◽  
Weijun Zhang ◽  
Wei Gao

This work studies the photocatalytic activity of zinc oxide ( ZnO ) nanopowder to recover silver ( Ag ) metal from low Ag + concentrated solution under artificial ultraviolet (UV) light. Benchmark titanium dioxide (P25 TiO 2) was used for comparison purpose. Experimental results indicated that ZnO exhibited superior performance for Ag recovery compared to TiO 2. Under optimal catalyst loading, the achieved Ag removal efficiencies were 100% and 99.94% at 0.2 g/L ZnO (1 h) and 2 g/L TiO 2 (2 h), respectively. An induction period at low concentration of TiO 2 (0.1 g/L) was observed and a mechanism was proposed. The photodissolution of ZnO was assessed and proved to be negligible. Recovered pure Ag metal was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM), showing a promising effective Ag recovery technology using ZnO photocatalyst.


2021 ◽  
Author(s):  
Ahmed ZITI ◽  
Bouchaib HARTITI ◽  
Amine BELAFHAILI ◽  
Hicham LABRIM ◽  
Salah FADILI ◽  
...  

Abstract Quaternary semiconductor Cu2NiSnS4 thin film was made by the sol-gel method associated to dip-coating technique on ordinary glass substrates. In this paper, we have studied the impact of dip-coating cycle at different cycles: 4, 5 and 6 on the structural, compositional, morphological, optical and electrical characteristics. CNTS thin films have been analyzed by various characterization techniques including: X-ray diffractometer (XRD), Raman measurements, scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS), UV-visible spectroscopy and four-point probe method. XRD spectra demonstrated the formation of cubic Cu2NiSnS4 with privileged orientation at (111) plane. Crystallite size of cubic CNTS thin films increase with from 6.30 to 9.52 with dip-coating cycle augmented. Raman scattering confirmed the existence of CNTS thin films by Raman vibrational mode positioned at 332 cm− 1. EDS investigations showed near-stoichiometry of CNTS sample deposited at 5 cycles. Scanning electron microscope showed uniform surface morphologies without any crack. UV-visible spectroscopy indicated that the optical absorption values are larger than 104 cm− 1, Estimated band gap energy of CNTS absorber layers decrease from 1.64 to 1.5 eV with dip-coating cycle increased. The electrical conductivity of CNTS thin films increase from 0.19 to 4.16 (Ω cm)-1. These characteristics are suitable for solar cells applications.


2019 ◽  
Vol 824 ◽  
pp. 163-167
Author(s):  
Pema Dechen ◽  
Ekasith Somsook

In this report, synthesis and characterization of gold nanoparticles (AuNPs) from gold leaf by electrolysis in two different media (gel and paper) in presence of sodium chloride (NaCl), glucose (C6H12O6) and polyvinyl pyrrolidone (PVP) at room temperature were investigated. Graphite was used as two electrodes, NaCl was used as an electrolyte, C6H12O6 was used as reducing agent and PVP was used as stabilizer to control the aggregation of the nanoparticles. UV-Visible spectroscopy (UV-Vis) and scanning electron microscopy (SEM) were used to confirm the characteristics and morphologies of the synthesized AuNPs.


Author(s):  
Robert Lotha ◽  
Aravind Sivasubramanian ◽  
Meenakshi Sundaram Muthuraman

Objective: The present study was aimed at the biosynthesis of silver nanoparticles (AgNPs) using aqueous extract of Euphorbia cyathophora leavesand testing their anticancer potential using HT-29 cell line model.Methods: Green synthesis of silver nanoparticles was obtained with the aqueous extract of E. cyathophora. The synthesized nanoparticles wereconfirmed initially by ultraviolet-visible spectroscopy. Further, scanning electron microscopy, transmission electron microscopy, and X-Ray diffractionstudies also ensured the presence of silver nanoparticles. Zeta potential studies revealed the stability of the silver nanoparticles.Results: Antioxidant and anticancer studies of the nanoparticles against HT-29 cell line exhibited remarkable results.Conclusion: This ensures that the synthesized nanoparticles play an important role in medicinal biology.


2012 ◽  
Vol 585 ◽  
pp. 144-148
Author(s):  
Poushpi Dwivedi ◽  
S.S. Narvi ◽  
R.P. Tewari

In this nanoregime attempts to bring forth nanoparticles and nanomaterials are myriads, with there interesting and demanding applications in almost every field. Today the field of nanoscience has bloomed with the confluence of nanotechnology with material science, biology, biotechnology and medicine and the need for nanotechnology will only increase as miniaturization becomes extremely important in various arrays of life. Since time immemorial silver nanoparticles have been extensively used for hygienic and healing purposes, and even until most recently, it has indispensible vital role especially in the biomedical arena. Thus in an attempt to generate silver nanoparticles employing green, environmentally benign route, we have designed to converge mythology with technology, with the mystical production of silver nanoparticles, enabled by the blueberry beads of the plant Elaeocarpus granitrus Roxb., the Rudraksha. This non-degradable bead does not disintegrate, but retains the potentiality, even after unlimited production of silver nanoparticles, assisting infinite times. The extremely cost-efficient nanoparticles thus developed in a superiorly efficient manner were characterized through different techniques; like UV/visible spectroscopy, PL spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and nanoparticle size analysis.


Sign in / Sign up

Export Citation Format

Share Document