scholarly journals Direct-Write Drawing of Carbon Nanotube/Polymer Composite Microfibers

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Scott M. Berry ◽  
Santosh Pabba ◽  
Robert W. Cohn ◽  
Robert S. Keynton

Carbon-nanotube- (CNT-) doped polymer solutions were drawn into arrays of microfibers using a novel direct-write process. This process utilizes a micromanipulator-controlled syringe loaded with solvated polymer mixed with CNTs to “write” networks of composite fibers with precisely positioned endpoints. The diameters of these composite fibers are correlated to the degree of capillary thinning that occurs prior to the solidification of the directly written CNT-doped solution filament. The fibers had diameters ranging from 7 μm to over 100 μm and possessed conductivities as high as 0.1 Sm−1. Fiber diameter was found to increase with increasing polymer concentration and decreasing fiber length and can be controlled through modulation of these parameters. The presence of CNTs was found not to significantly affect fiber diameter, despite the CNTs significant effect on viscosity, which was previously reported to influence diameter. This discrepancy is likely related to the non-Newtonian effects of CNT/polymer solutions, including an apparent shear thinning at increasing axial strain rates.

2008 ◽  
Vol 1143 ◽  
Author(s):  
Scott M. Berry ◽  
Santosh Pabba ◽  
Scott D. Cambron ◽  
Robert W. Cohn ◽  
Robert S. Keynton

ABSTRACTThe unique properties of carbon-nanotube (CNT)-doped polymers have generated several promising applications including gas sensors, high-strength/light-weight materials, and electromagnetic interference shielding. The ability to process CNT-doped materials into complex architectures may enable further advancement of these devices. We have developed a direct-write technique for processing CNT-doped poly(methyl methacrylate) (PMMA) into 3D arrays of precisely-positioned fibers with micro- and sub-microscale diameters. In this method, a programmable micromanipulator-controlled syringe was loaded with solvated CNT/PMMA and utilized to draw an array of freely-suspended solution filaments on a substrate in a “connect-the-dots” fashion. As the filaments are drawn, they are thinned by surface tension-driven necking as they dry and form solid fibers. The degree of thinning can be controlled by varying the viscosity of the solution, which acts to resist the necking while the volatile solvent evaporates and solidification occurs. Multiple fibers were drawn to investigate the effects of several factors on fiber diameter and process yield. These variables included fiber length (4, 8, and 18 mm), fiber drawing velocity (5 and 20 mm/s), polymer concentration in solution (22 and 24% by wt.), and CNT concentration in solution (0, 0.5, 1, and 1.5% by wt.), with the latter two of these variables strongly influencing solution viscosity. Measurement of the fibers via scanning electron microscopy (SEM) revealed several trends: Fiber diameter was not influenced by CNT concentration, but increased with increasing PMMA concentration (P<0.001), increasing drawing rate (P<0.01), and decreasing fiber length (P<0.001), with fiber diameter ranging from 538 nm to >100 μm. Furthermore, fiber yield exceeded 75% for all tested solutions except for the lowest viscosity CNT-doped solution (24% PMMA/0.5% CNT, η=50.1 Pa*s), which experienced capillary breakup prior to solidification. The conductivities of direct-write PMMA/CNT fibers ranged from <10-7to 0.15 S/m, with shorter fibers having higher conductivities (P<10.005). Also, fibers drawn from solutions with 1.0% CNTs had higher conductivities that those drawn from solutions with 0.5% or 1.5% CNTs (P<0.01). This nonlinear trend was further investigated by cleaving fibers in liquid nitrogen and imaging their cross-sections with an SEM. This analysis illustrated that the CNTs, which were functionalized to remain dispersed in the solvent, tended to randomly aggregate within the polymer-fiber matrix, particularly for fibers drawn from solutions containing 1.5% CNTs. In conclusion, CNT/PMMA fibers were successfully drawn with the direct-write technique and CNT doping had no significant influence on fiber diameter or yield compared with fibers drawn from PMMA homopolymer. However, the CNTs were found to strongly aggregate when drawn from solutions loaded at high concentrations (1.5%), thereby hindering electrical transport.


Author(s):  
Thomas Gebrenegus ◽  
Jennifer E. Nicks ◽  
Michael T. Adams

Despite their wide application as construction materials in various earthworks built by state and local transportation agencies, the role of physical and mechanical factors in the strength and deformation behavior of crushed, manufactured open-graded aggregates (OGAs) is not well studied. In this investigation, the strain rate dependency of strength–deformation behaviors of two commonly employed crushed aggregates with small (12.7 mm) and large (38.1 mm) sizes is investigated. A 150-mm diameter triaxial testing device was used to conduct a drained compression test at five strain rates, ranging from 0.000083%/s to 0.0083%/s. To evaluate the significance of confining stress and density on the effect of strain rates, the shear tests were conducted at 34 kPa and 207 kPa effective confining stress levels, with the samples compacted at loose (30%) and dense (95%) relative densities. The peak friction angle, maximum dilation angle, secant modulus, and axial strain at which the aggregates started to dilate were determined to evaluate the strain rate effect on the shear behavior of OGAs. The results demonstrate that within the imposed quasistatic strain rate ranges, only the dilation angle showed an increasing trend with the increase in strain rate, whereas other extracted strength parameters were less sensitive to strain rate for both OGAs tested. Hence, the selection of strain rates according to ASTM specifications is appropriate for conducting strength parameter tests, used by practitioners for the design of geotechnical structures, on OGAs under quasistatic conditions.


2019 ◽  
Vol 92 ◽  
pp. 05008
Author(s):  
Zain Maqsood ◽  
Junichi Koseki ◽  
Hiroyuki Kyokawa

It has been unanimously acknowledged that the strength and deformation characteristics of bounded geomaterials, viz. cemented soils and natural rocks, are predominantly governed by the rate of loading/deformation. Rational evaluation of these time-dependent characteristics due to viscosity and ageing are vital for the reliable constitutive modelling. In order to study the effects of ageing and loading/strain rate (viscosity) on the behaviour of bounded geomaterials, a number of unconfined monotonic loading tests were performed on Gypsum Mixed Sand (GMS) specimens at a wide range of axial strain rates; ranging from 1.9E-05 to 5.3E+00 %/min (27,000 folds), and at different curing periods. The results indicate shifts in the viscous behaviour of GMS at critical strain rates of 2.0E-03 and 5.0E-01 %/min. In the light of this finding, the results are categorized into three discrete zones of strain rates, and the behaviour of GMS in each of these zones is discussed. A significant dependency of peak strength and stress-strain responses on strain rate was witnessed for specimens subjected to strain rates lesser than 2.0E-03 %/min, and the effects of viscosity/strain rate was found to be insignificant at strain rate higher than 5.0E-01%/min.


2015 ◽  
Vol 82 (2) ◽  
Author(s):  
G. O. Antoine ◽  
R. C. Batra

We propose a constitutive relation for finite deformations of nearly incompressible isotropic viscoelastic rubbery adhesives assuming that the Cauchy stress tensor can be written as the sum of elastic and viscoelastic parts. The former is derived from a stored energy function and the latter from a hereditary type integral. Using Ogden’s expression for the strain energy density and the Prony series for the viscoelastic shear modulus, values of material parameters are estimated by using experimental data for uniaxial tensile and compressive cyclic deformations at different constant engineering axial strain rates. It is found that values of material parameters using the loading part of the first cycle, the complete first cycle, and the complete two loading cycles are quite different. Furthermore, the constitutive relation with values of material parameters determined from the monotonic loading during the first cycle of deformations cannot well predict even deformations during the unloading portion of the first cycle. The developed constitutive relation is used to study low-velocity impact of polymethylmethacrylate (PMMA)/adhesive/polycarbonate (PC) laminate. The three sets of values of material parameters for the adhesive seem to have a negligible effect on the overall deformations of the laminate. It is attributed to the fact that peak strain rates in the severely deforming regions are large, and the corresponding stresses are essentially unaffected by the long time response of the adhesive.


RSC Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 5678-5684 ◽  
Author(s):  
Shaobo Zhang ◽  
Feiran Zhang ◽  
Yanfei Pan ◽  
Liping Jin ◽  
Bo Liu ◽  
...  

MWCNT-cellulose/cellulose composite fibers with enhanced mechanical and conducting properties were preparedviafacilitating the dispersion of MWCNTs in fibers.


Sign in / Sign up

Export Citation Format

Share Document