scholarly journals Preliminary Design of Debris Removal Missions by Means of Simplified Models for Low-Thrust, Many-Revolution Transfers

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Federico Zuiani ◽  
Massimiliano Vasile

This paper presents a novel approach for the preliminary design of Low-Thrust, many-revolution transfers. The main feature of the novel approach is a considerable reduction in the control parameters and a consequent gain in computational speed. Each spiral is built by using a predefined pattern for thrust direction and switching structure. The pattern is then optimised to minimise propellant consumption and transfer time. The variation of the orbital elements due to the thrust is computed analytically from a first-order solution of the perturbed Keplerian motion. The proposed approach allows for a realistic estimation ofVand time of flight required to transfer a spacecraft between two arbitrary orbits. Eccentricity and plane changes are both accounted for. The novel approach is applied here to the design of missions for the removal of space debris by means of an Ion Beam Shepherd Spacecraft. In particular, two slightly different variants of the proposed low-thrust control model are used for the different phases of the mission. Thanks to their low computational cost they can be included in a multiobjective optimisation problem in which the sequence and timing of the removal of five pieces of debris are optimised to minimise propellant consumption and mission duration.

2019 ◽  
Vol 31 (3) ◽  
pp. 574-595
Author(s):  
Seyed Mohammad Ali Rahmati ◽  
Mostafa Rostami ◽  
Alireza Karimi

The high computational cost (CC) of neuromusculoskeletal modeling is usually considered a serious barrier in clinical applications. Different approaches have been developed to lessen CC and amplify the accuracy of muscle activation prediction based on forward and inverse analyses by applying different optimization algorithms. This study is aimed at proposing two novel approaches, inverse muscular dynamics with inequality constraints (IMDIC) and inverse-forward muscular dynamics with inequality constraints (IFMDIC), not only to reduce CC but also to amend the computational errors compared to the well-known approach of extended inverse dynamics (EID). To do that, the equality constraints of optimization problem, which are computationally tough to satisfy, are replaced by inequality constraints, which are easier to satisfy. To verify the practical application of the proposed approaches, the muscle activations of the lower limbs during the half of a gait cycle are quantified. The simulation results of the optimal muscle activations are then compared to the experimental ones. The results reveal that IMDIC requires less CC (87.5%) compared to EID. In addition, CC of IMDIC was about 33.3% improved by the application of IFMDIC. The findings of this study suggest that although the novel approach of IFMDIC decreases CC compared to IMDIC, the convergence of its results is very sensitive to the primary guess of the optimization variables.


2020 ◽  
Author(s):  
Elaine Gallagher ◽  
Bas Verplanken ◽  
Ian Walker

Social norms have been shown to be an effective behaviour change mechanism across diverse behaviours, demonstrated from classical studies to more recent behaviour change research. Much of this research has focused on environmentally impactful actions. Social norms are typically utilised for behaviour change in social contexts, which facilitates the important element of the behaviour being visible to the referent group. This ensures that behaviours can be learned through observation and that deviations from the acceptable behaviour can be easily sanctioned or approved by the referent group. There has been little focus on how effective social norms are in private or non-social contexts, despite a multitude of environmentally impactful behaviours occurring in the home, for example. The current study took the novel approach to explore if private behaviours are important in the context of normative influence, and if the lack of a referent groups results in inaccurate normative perceptions and misguided behaviours. Findings demonstrated variance in normative perceptions of private behaviours, and that these misperceptions may influence behaviour. These behaviours are deemed to be more environmentally harmful, and respondents are less comfortable with these behaviours being visible to others, than non-private behaviours. The research reveals the importance of focusing on private behaviours, which have been largely overlooked in the normative influence literature.


2018 ◽  
Author(s):  
Steve Wang ◽  
Jim McGinn ◽  
Peter Tvarozek ◽  
Amir Weiss

Abstract Secondary electron detector (SED) plays a vital role in a focused ion beam (FIB) system. A successful circuit edit requires a good effective detector. Novel approach is presented in this paper to improve the performance of such a detector, making circuit altering for the most advanced integrated circuit (IC) possible.


Author(s):  
Po Fu Chou ◽  
Li Ming Lu

Abstract Dopant profile inspection is one of the focused ion beam (FIB) physical analysis applications. This paper presents a technique for characterizing P-V dopant regions in silicon by using a FIB methodology. This technique builds on published work for backside FIB navigation, in which n-well contrast is observed. The paper demonstrates that the technique can distinguish both n- and p-type dopant regions. The capability for imaging real sample dopant regions on current fabricated devices is also demonstrated. SEM DC and FIB DC are complementary methodologies for the inspection of dopants. The advantage of the SEM DC method is high resolution and the advantage of FIB DC methodology is high contrast, especially evident in a deep N-well region.


2021 ◽  
Vol 11 (2) ◽  
pp. 674
Author(s):  
Marianna Koctúrová ◽  
Jozef Juhár

With the ever-progressing development in the field of computational and analytical science the last decade has seen a big improvement in the accuracy of electroencephalography (EEG) technology. Studies try to examine possibilities to use high dimensional EEG data as a source for Brain to Computer Interface. Applications of EEG Brain to computer interface vary from emotion recognition, simple computer/device control, speech recognition up to Intelligent Prosthesis. Our research presented in this paper was focused on the study of the problematic speech activity detection using EEG data. The novel approach used in this research involved the use visual stimuli, such as reading and colour naming, and signals of speech activity detectable by EEG technology. Our proposed solution is based on a shallow Feed-Forward Artificial Neural Network with only 100 hidden neurons. Standard features such as signal energy, standard deviation, RMS, skewness, kurtosis were calculated from the original signal from 16 EEG electrodes. The novel approach in the field of Brain to computer interface applications was utilised to calculated additional set of features from the minimum phase signal. Our experimental results demonstrated F1 score of 86.80% and 83.69% speech detection accuracy based on the analysis of EEG signal from single subject and cross-subject models respectively. The importance of these results lies in the novel utilisation of the mobile device to record the nerve signals which can serve as the stepping stone for the transfer of Brain to computer interface technology from technology from a controlled environment to the real-life conditions.


ChemInform ◽  
2015 ◽  
Vol 46 (17) ◽  
pp. no-no
Author(s):  
Hajime Yokoyama ◽  
Takayoshi Kubo ◽  
Yosuke Matsumura ◽  
Junichi Hosokawa ◽  
Masahiro Miyazawa ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 815
Author(s):  
Przemysław Domaszewski ◽  
Paweł Pakosz ◽  
Mariusz Konieczny ◽  
Dawid Bączkowicz ◽  
Ewa Sadowska-Krępa

Studies on muscle activation time in sport after caffeine supplementation confirmed the effectiveness of caffeine. The novel approach was to determine whether a dose of 9 mg/kg/ body mass (b.m.) of caffeine affects the changes of contraction time and the displacement of electrically stimulated muscle (gastrocnemius medialis) in professional athletes who regularly consume products rich in caffeine and do not comply with the caffeine discontinuation period requirements. The study included 40 professional male handball players (age = 23.13 ± 3.51, b.m. = 93.51 ± 15.70 kg, height 191 ± 7.72, BMI = 25.89 ± 3.10). The analysis showed that in the experimental group the values of examined parameters were significantly reduced (p ≤ 0.001) (contraction time: before = 20.60 ± 2.58 ms/ after = 18.43 ± 3.05 ms; maximal displacement: before = 2.32 ± 0.80 mm/after = 1.69 ± 0.51 mm). No significant changes were found in the placebo group. The main achievement of this research was to demonstrate that caffeine at a dose of 9 mg/kg in professional athletes who regularly consume products rich in caffeine has a direct positive effect on the mechanical activity of skeletal muscle stimulated by an electric pulse.


2001 ◽  
Vol 711 ◽  
Author(s):  
Alexander Zelikin ◽  
Venkatram Shastri ◽  
David Lynn ◽  
Jian Farhadi ◽  
Ivan Martin ◽  
...  

ABSTRACTConductive polymers such as polypyrrole (Ppy) are potentially useful as an active interface for altering cellular processes and function. Their utilization in medically related applications however have been substantially held back by their non-degradable nature. Herein we report a novel approach to creation of bioerodible polypyrroles via modification of pyrrole beta-carbon with an ionizable moiety. It has been shown that the erosion rate of acid-bearing derivative of polypyrrole increases with pH, which is consistent with the pH dependent ionization of carboxylic acid group. The novel paradigm proposed for the creation of bioerodible polypyrroles allows for simple and efficient control over the erosion rate of the substrate independent of the polymer chain length, via the choice of the terminal ionizable group and its concentration along the polymer backbone.


Sign in / Sign up

Export Citation Format

Share Document