scholarly journals Nerium oleanderDistillate Improves Fat and Glucose Metabolism in High-Fat Diet-Fed Streptozotocin-Induced Diabetic Rats

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmet Levent Bas ◽  
Sule Demirci ◽  
Nuray Yazihan ◽  
Kamil Uney ◽  
Ezgi Ermis Kaya

Diabetes was induced by intraperitoneal injection of streptozotocin (35 mg/kg bw) in all rats of five groups after being fed for 2 weeks high-fat diet. Type 2 diabeticNerium-oleander-(NO-) administered groups received the NO distillate at a dose of 3.75, 37.5, and 375 μg/0.5 mL of distilled water (NO-0.1, NO-1, NO-10, resp.); positive control group had 0.6 mg glibenclamide/kg bw/d by gavage daily for 12 weeks. Type 2 diabetic negative control group had no treatment. NO distillate administration reduced fasting blood glucose, HbA1c, insulin resistance, total cholesterol, low density lipoprotein, atherogenic index, triglyceride-HDL ratio, insulin, and leptin levels. Improved beta cell function and HDL concentration were observed by NO usage. HDL percentage in total cholesterol of all NO groups was similar to healthy control. NO-10 distillate enhanced mRNA expressions of peroxisome proliferator-activated-receptor- (PPAR-)α,β, andγin adipose tissue and PPAR-α–γin liver. The findings from bothin vivoandin vitrostudies suggest that the considerable beneficial effect of NO distillate administration at a dose of 375 μg/0.5 mL of distilled water may offer new approaches to treatment strategies that target both fat and glucose metabolism in type 2 diabetes.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Soo Im Chung ◽  
Mi Young Kang

Obesity is a significant risk factor for chronic diseases. The effect of ethanol extract from germinated Keunnunjami, blackish-purple rice with a giant embryo, compare to ordinary brown rice, on the body weight and lipid and glucose metabolism in high-fat diet-fed mice was analyzed. Mice were fed with a high-fat diet-fed for 3 weeks and then orally administered with either distilled water (HF) or extract (0.25%, w / w ) from brown, germinated brown, Keunnunjami, and germinated Keunnunjami rice for 4 weeks. Control mice were fed with a normal diet and orally administered with distilled water. The HF group showed markedly higher body weight and triglyceride, cholesterol, fatty acid, glucose, and insulin levels than the control group. However, the oral administration of rice extracts ameliorated this high-fat diet-induced obesity, hyperlipidemia, and hypoglycemia through the modulation of adipokine production, lipogenic and glucose-regulating enzyme activities, and mRNA expression of genes associated with lipid and glucose metabolism. The germinated Keunnunjami extract exhibited greater hypolipidemic, hypoglycemic, and body weight-lowering effects than the other rice extracts. The results demonstrated that germination could further enhance the physiological properties of rice and that germinated Keunnunjami extract has a strong therapeutic potential against high-fat diet-induced obesity, hyperlipidemia, and hyperglycemia.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 756
Author(s):  
Hye-Jeong Yang ◽  
Ting Zhang ◽  
Xuan-Gao Wu ◽  
Min-Jung Kim ◽  
Young-Ho Kim ◽  
...  

This study was undertaken to determine whether aqueous blackcurrant extracts (BC) improve glucose metabolism and gut microbiomes in non-obese type 2 diabetic animals fed a high-fat diet and to identify the mechanism involved. Partially pancreatectomized male Sprague–Dawley rats were provided a high-fat diet containing 0% (control), 0.2% (L-BC; low dosage), 0.6% (M-BC; medium dosage), and 1.8% (H-BC; high dosage) blackcurrant extracts; 0.2% metformin (positive-C); plus 1.8%, 1.6%, 1.2%, 0%, and 1.6% dextrin, specifically indigestible dextrin, daily for 8 weeks. Daily blackcurrant extract intakes were equivalent to 100, 300, and 900 mg/kg body weight (bw). After a 2 g glucose or maltose/kg bw challenge, serum glucose and insulin concentrations during peak and final states were obviously lower in the M-BC and H-BC groups than in the control group (p < 0.05). Intraperitoneal insulin tolerance testing showed that M-BC and H-BC improved insulin resistance. Hepatic triglyceride deposition, TNF-α expression, and malondialdehyde contents were lower in the M-BC and H-BC groups than in the control group. Improvements in insulin resistance in the M-BC and H-BC groups were associated with reduced inflammation and oxidative stress (p < 0.05). Hyperglycemic clamp testing showed that insulin secretion capacity increased in the acute phase (2 to 10 min) in the M-BC and H-BC groups and that insulin sensitivity in the hyperglycemic state was greater in these groups than in the control group (p < 0.05). Pancreatic β-cell mass was greater in the M-BC, H-BC, and positive-C groups than in the control group. Furthermore, β-cell proliferation appeared to be elevated and apoptosis was suppressed in these three groups (p < 0.05). Serum propionate and butyrate concentrations were higher in the M-BC and H-BC groups than in the control group. BC dose-dependently increased α-diversity of the gut microbiota and predicted the enhancement of oxidative phosphorylation-related microbiome genes and downregulation of carbohydrate digestion and absorption-related genes, as determined by PICRUSt2 analysis. In conclusion, BC enhanced insulin sensitivity and glucose-stimulated insulin secretion, which improved glucose homeostasis, and these improvements were associated with an incremental increase of the α-diversity of gut microbiota and suppressed inflammation and oxidative stress.


2012 ◽  
Vol 5 (12) ◽  
pp. 956-961 ◽  
Author(s):  
Haseena Banu Hedayathullah Khan ◽  
Kaladevi Siddhi Vinayagam ◽  
Shanthi Palanivelu ◽  
Sachdanandam Panchanadham

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Souravh Bais ◽  
Guru Sewak Singh ◽  
Ramica Sharma

In the present study, the methanolic extract of Moringa oleifera leaves (MEMOL) was evaluated for antiobesity activity in rats. The antiobesity potential of MEMOL was studied against high fat diet-induced obesity (HFD) in rats. In this study, chronic administration of HFD in rats produced hypercholesterolemia (116.2 ± 0.27 mg/dL), which led to an increase in the body weight (225 gr), total cholesterol, triglycerides (263.0 ± 4.69 mg/dL), and attenuation in the levels of HDL (34.51 ± 2.20 mg/dL) as well as changes in body temperature of animals. Treatment of obese rats with MEMOL for 49 days resulted in a significant (P<0.001) change in body weight, total cholesterol, triglycerides, and LDL level along with a significant (P<0.001) increase in body temperature as compared to the HFD-induced obesity. MEMOL treated rats also showed a significant decrease in the level of liver biomarkers, organ weight, and blood glucose level. Further, rats treated with MEMOL (200 mg and 400 mg/kg) show reduced atherogenic index (1.7 ± 0.6 and 0.87 ± 0.76). The results indicate that the rats treated with Moringa oleifera (MO) have significantly attenuated the body weight without any change in the feed intake and also elicited significant thermogenic effect and to act as hypolipidemic and thermogenic property in obesity related disorders.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 159 ◽  
Author(s):  
Kyung-Ah Park ◽  
Zhen Jin ◽  
Jong Youl Lee ◽  
Hyeong Seok An ◽  
Eun Bee Choi ◽  
...  

Glucagon-like peptide 1 (GLP-1) mimetics have been approved as an adjunct therapy for glycemic control in type 2 diabetic patients for the increased insulin secretion under hyperglycemic conditions. Recently, it is reported that such agents elicit neuroprotective effects against diabetes-associated cognitive decline. However, there is an issue of poor compliance by multiple daily subcutaneous injections for sufficient glycemic control due to their short duration, and neuroprotective actions were not fully studied, yet. In this study, using the prepared exendin-4 fusion protein agent, we investigated the pharmacokinetic profile and the role of this GLP-1 mimetics on memory deficits in a high-fat diet (HFD)/streptozotocin (STZ) mouse model of type 2 diabetic mellitus. After induction of diabetes, mice were administered weekly by intraperitoneal injection of GLP-1 mimetics for 6 weeks. This treatment reversed HFD/STZ-induced metabolic symptoms of increased body weight, hyperglycemia, and hepatic steatosis. Furthermore, the impaired cognitive performance of diabetic mice was significantly reversed by GLP-1 mimetics. GLP-1 mimetic treatment also reversed decreases in GLP-1/GLP-1 receptor expression levels in both the pancreas and hippocampus of diabetic mice; increases in hippocampal inflammation, mitochondrial fission, and calcium-binding protein levels were also reversed. These findings suggest that GLP-1 mimetics are promising agents for both diabetes and neurodegenerative diseases that are associated with increased GLP-1 expression in the brain.


Sign in / Sign up

Export Citation Format

Share Document