scholarly journals Growth of Polycrystalline In2S3 Thin Films by Chemical Bath Deposition Using Acetic Acid as a Complexing Agent for Solar Cell Application

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
G. R. Gopinath ◽  
K. T. Ramakrishna Reddy

In2S3 films have been successfully deposited on Corning glass substrates via chemical bath deposition (CBD) method using acetic acid as a novel complexing agent. The layers were grown by employing synthesis using indium sulphate and thioacetamide (TA) as precursors by varying TA concentration in the range of 0.1–0.5 M, keeping other deposition parameters constant. Energy dispersive X-ray analysis (EDAX) revealed an increase of S/In ratio in the films with the increase of TA concentration in the solution. The X-ray diffraction (XRD) analysis indicated a change in preferred orientation from (311) plane related to cubic structure to the (103) direction corresponding to the tetragonal crystal structure. The evaluated crystallite size varied in the range of 15–25 nm with the increase of TA concentration. Morphological analysis showed that the granular structure and the granular density decrease with the raise of TA concentration. The optical properties of the layers were also investigated using UV-Vis-NIR analysis, which indicated that all the In2S3 films had the optical transmittance >60% in the visible region, and the evaluated energy band varied in the range of 2.87–3.32 eV with the change of TA concentration. Further, a thin film heterojunction solar cell was fabricated using a novel absorber layer, SnS, with In2S3 as a buffer. The unoptimized SnS/In2S3/ZnO:Al solar cell showed a conversion efficiency of 0.6%.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fei-Peng Yu ◽  
Sin-Liang Ou ◽  
Pin-Chuan Yao ◽  
Bing-Rui Wu ◽  
Dong-Sing Wuu

In this study, ZnS thin films were prepared on glass substrates by chemical bath deposition at various Zn/S molar ratios from 1/50 to 1/150. The effects of Zn/S molar ratio in precursor on the characteristics of ZnS films were demonstrated by X-ray diffraction, scanning electron microscopy, optical transmittance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. It was found that more voids were formed in the ZnS film prepared using the precursor with Zn/S molar ratio of 1/50, and the other ZnS films showed the denser structure as the molar ratio was decreased from 1/75 to 1/150. From the analyses of chemical bonding states, the ZnS phase was indeed formed in these films. Moreover, the ZnO and Zn(OH)2also appeared due to the water absorption on film surface during deposition. This would be helpful to the junction in cell device. With changing the Zn/S molar ratio from 1/75 to 1/150, the ZnS films demonstrate high transmittance of 75–88% in the visible region, indicating the films are potentially useful in photovoltaic applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yi-Feng Chai ◽  
Ling-Ling Wang ◽  
Gui-Fang Huang ◽  
Wei-Qing Huang ◽  
Yan-Hua Zhu

Zn0.2Cd0.8S alloyed films were prepared on glass substrates at room temperature using chemical bath deposition method. The obtained films were annealed at temperatures ranging from 200°C to 500°C with heating rate of 5°C/min and annealed at 400°C with heating rate of 2°C/min and 10°C/min. The films were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and UV-VIS spectrophotometer. The increasing of annealing temperature increases the crystallinity and the mean grain size of Zn0.2Cd0.8S alloyed films and significantly enhances the absorption in the visible region. The efficient visible light photocatalytic activity for annealed Zn0.2Cd0.8S alloyed films is associated with the larger size grain and the higher crystallinity.


2007 ◽  
Vol 14 (03) ◽  
pp. 425-429
Author(s):  
KASIMAYAN UMA ◽  
MOHAMAD RUSOP ◽  
TETSUO SOGA ◽  
TAKASHI JIMBO

ZnO thin films were prepared on silicon (001) and corning glass substrates using Pulsed laser deposition (PLD) technique with different oxygen pressures. The microstructure, crystallinity, and resistivity of the films depend on the oxygen pressure used. The effects of the films grown at room temperature and at 500°C with different oxygen pressures have been investigated by analyzing the optical and electrical properties of the film. The XRD analysis showed that the high intensity of c-axis orientation of ZnO thin films was obtained under high oxygen pressure and this leads to greater electrical and optical properties. By applying high pressure oxygen, the resistivity value was decreased and optical transmittance became higher in the visible region. The surface morphology of the films showed that the smooth surface was observed without any cracks.


2014 ◽  
Vol 548-549 ◽  
pp. 201-205
Author(s):  
Fedil G. Sanico ◽  
Rolando T. Candidato ◽  
Reynaldo M. Vequizo ◽  
Arnold C. Alguno

Silica-modified polyaniline (SM-PAni) were deposited on glass and platinum-coated glass substrates via oxidative polymerization. Zinc sulfide (ZnS) were grown on top of SM-PAni films by chemical bath deposition. The surface and optical characteristics were investigated. SEM micrographs revealed the formation of SM-PAni nanostructures and ZnS nanospheres. Increase in nanosphere sizes were observed when Pt-coated substrates were used. UV-Vis spectra showed that SM-PAni/ZnS nanocomposites grown on both substrates exhibit good absorbance in the visible and ultraviolet region which is a good indication for potential solar cell application. Better absorbance in the ultraviolet region was observed when Pt-coated substrates was used. Vibrational peaks observed in FTIR confirmed the presence of SM-PAni particles.


2014 ◽  
Vol 28 ◽  
pp. 91-99 ◽  
Author(s):  
Mou Pal ◽  
A. Martinez Ayala ◽  
N.R. Mathews ◽  
X. Mathew

SnS nanocrystals of sub-10 nm in size were synthesized by a room temperature, non-aqueous chemical route in the presence of different amounts of triethanolamine (TEA) used as a complexing agent. The crystallinity, size, morphology, chemical composition and optical properties of the as-prepared SnS nanoparticles were investigated by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Energy-dispersive X-ray spectroscopy (EDS), micro Raman and optical absorption spectroscopy. The XRD analysis and HRTEM investigation of SnS nanoparticles confirmed the presence of crystalline orthorhombic SnS phase. Upon increasing the amount of TEA, the crystallite size of the samples decreased gradually showing evidence of quantum confinement. EDS analysis showed that SnS nanoparticles (NPs) grown in absence of TEA were highly stoichiometric whereas in TEA capped samples, the atomic concentration of S is slightly higher than that of Sn. As-synthesized SnS nanocrystals displayed strong absorption in the visible and near-infrared spectral regions followed by a blue shift of their absorption edge on increasing the TEA concentration. These nanoparticles were used to prepare SnS paste which was deposited on conducting glass substrates to obtain thin films for photovoltaic applications. The crystallinity, morphology, chemical composition and optical properties of annealed SnS films were investigated.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
B. Abdallah ◽  
A. Ismail ◽  
H. Kashoua ◽  
W. Zetoun

Lead sulfide thin films were prepared by chemical bath deposition (CBD) on both glass and Si (100) substrates. XRD analysis of the PbS film deposited at 25°C showed that the prepared films have a polycrystalline structure with (200) preferential orientation. Larger grains could be obtained by increasing the deposition time. The prepared films were also chemically characterized using X-ray photoelectron spectroscopy (XPS), which confirmed the presence of lead and sulfur as PbS. While energy dispersive X-ray spectroscopy (EDX) technique was used to verify the stoichiometry of the prepared films. Atomic force microscopy (AFM) was used to study the change in the films’ morphology with the deposition time. The effect of the deposition time, on both optical transmittance in the UV-Vis-NIR region and the structure of the film, was studied. The obtained results demonstrated that the optical band gap decreased when the thickness increased.


2021 ◽  
Author(s):  
Daniel T ◽  
Balasubramanian V ◽  
Sivakumar G ◽  
Kannusamy Mohanraj

Abstract This study reports the opto-structural, morphological, topological and electrical properties of thermally evaporated AgxBi2-xS3-y thin film prepared for various x and y values (x= y= 0, 0.25, 0.50, 0.75 and 1). The films have cubic structured AgBiS2 along with orthorhombic structured Bi2S3 as confirmed from X-ray diffraction (XRD) analysis. The films showed higher optical absorption coefficient (105cm-1) in the visible region and band gap values are found to be decreased from 2.08 eV to 1.35 eV for AgxBi2-xS3-y (x= y = 0 to 1) films. Scanning electron microscope (SEM) images showed the uniform distribution of spherical particles. Carrier concentration of the films are better than x= y= 0 as observed from Hall effect and Mott- Schottky plots. The FTO/ AgxBi2-xS3-y (x= y = 1) photoelectrochemical cell yields the photoconversion efficiency (PCE) of 7.03 %. The device FTO/ AgxBi2-xS3-y (x= y = 1) CdS/Ag solar cell has exhibited PCE of 3.26%.


2011 ◽  
Vol 04 (04) ◽  
pp. 401-405 ◽  
Author(s):  
W. CHER ◽  
S. YICK ◽  
S. XU ◽  
Z. J. HAN ◽  
K. OSTRIKOV

Al -doped zinc oxide (AZO) thin films are deposited onto glass substrates using radio-frequency reactive magnetron sputtering and the improvements in their physical properties by post-synthesis thermal treatment are reported. X-ray diffraction spectra show that the structure of films can be controlled by adjusting the annealing temperatures, with the best crystallinity obtained at 400°C under a nitrogen atmosphere. These films exhibit improved quality and better optical transmittance as indicated by the UV-Vis spectra. Furthermore, the sheet resistivity is found to decrease from 1.87 × 10-3 to 5.63 × 10-4Ω⋅cm and the carrier mobility increases from 6.47 to 13.43 cm2 ⋅ V-1 ⋅ s-1 at the optimal annealing temperature. Our results demonstrate a simple yet effective way in controlling the structural, optical and electrical properties of AZO thin films, which is important for solar cell applications.


2011 ◽  
Vol 1327 ◽  
Author(s):  
Dong Won Kang ◽  
Jong Seok Woo ◽  
Sung Hwan Choi ◽  
Seung Yoon Lee ◽  
Heon Min. Lee ◽  
...  

ABSTRACTWe have propsed MgO/AZO bi-layer transparent conducting oxide (TCO) for thin film solar cells. From XRD analysis, it was observed that the full width at half maximum of AZO decreased when it was grown on MgO precursor. The Hall mobility of MgO/AZO bi-layer was 17.5cm2/Vs, whereas that of AZO was 20.8cm2/Vs. These indicated that the crystallinity of AZO decreased by employing MgO precursor. However, the haze (=total diffusive transmittance/total transmittance) characteristics of highly crystalline AZO was significantly improved by MgO precursor. The average haze in the visible region increased from 14.3 to 48.2%, and that in the NIR region increased from 6.3 to 18.9%. The reflectance of microcrystalline silicon solar cell was decreased and external quantum efficiency was significantly improved by applying MgO/AZO bi-layer TCO. The efficiency of microcrystalline silicon solar cell with MgO/AZO bi-layer front TCO was 6.66%, whereas the efficiency of one with AZO single TCO was 5.19%.


Sign in / Sign up

Export Citation Format

Share Document