scholarly journals Expression of Bmi-1 in Pediatric Brain Tumors as a New Independent Prognostic Marker of Patient Survival

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Shirin Farivar ◽  
Reza Zati Keikha ◽  
Reza Shiari ◽  
Farzaneh Jadali

Objectives. The B-cell-specific moloney leukemia virus insertion site 1 (the Bmi-1) gene is an important member in the family of polycomb group (PcG) genes that plays an oncogenic role in several types of cancer, but it’s expression as a prognostic marker in pediatric brain tumors has not been indicated.Materials and Methods. The Bmi-1 gene expression, clinic pathological and prognostic significance in a series of pediatric brain tumors were examined by real-time PCR method in 56 pediatric brain tumors.Results. The Bmi-1 gene expression in various types of pediatric brain tumors compared to that in normal brain tissue was 4.85-fold. The relative expression varied from 8.64-fold in ependymomas to 2.89-fold in other types. Expression level in high-grade tumors compared to that in low-grade tumors was 2.5 times. In univariate survival analysis of the pediatric brain tumors, a significant association of high expression of the Bmi-1 with patient survival was demonstrated. In multivariate analysis, the Bmi-1 high expression provided significant independent prognostic factors.Conclusion. Increased expression of the Bmi-1 in pediatric brain tumors may be important in the acquisition of an aggressive phenotype. In addition, it can be used as a strong and independent molecular marker of prognosis in pediatric brain tumors.

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 20023-20023
Author(s):  
M. M. Abdel Wahab ◽  
H. Hussien ◽  
K. M. Maher

20023 Purpose: To evaluate the delayed adverse changes in neuro-cognitive functions as well as white matter damage in radiated survivors of pediatric brain tumors. Methods: Forty two children (22 males) with primary brain tumors who were only treated with cranial radiation, were recruited. 28 patients were treated for low risk medulloblastoma, 10 patients for low grade astrocytoma, 3 patients for low grade ependymoma, and 1 patient for craniopharyngioma. Their ages ranged from 3 to 18 years (mean 10.3±3.98 years).They were subjected, initially just before radiotherapy and at follow-up 1–2 year after completion of cranial radiation, to serial clinical and neuropsychological assessments including Wechseler Intelligence Scale for Children, Vineland social maturity test, Benton Visual Memory Test, and Revised Behavior Problem Checklist. Magnetic resonance scans were also performed to detect the presence of white matter damage before radiotherapy and at follow up. Results: Initially, after surgery and before radiation, intelligence test scores were below normal scores for age and this was of high statistical significance (Total IQ: t= -3.02, P= 0.006). Visual memory test showed evidence of organicity in all cases. Social maturity showed a statistically significant decline as well (t= -2.11, P= 0.04). Follow-up after radiotherapy showed further decline with high statistical significance (Total IQ t= 3.228, P=0.003; visual memory t= 4.08, P= 0.001); An attentional problem has emerged (t= -6.12, P= 0.00). Both radiation dose and volume of radiation showed negative and statistically significant correlation with IQ. Age at diagnosis correlated positively and significantly with IQ ( r= 0.601, P=0.001). Multiple linear regression showed impaired neurocognitive function which was correlated with the degree of white matter damage. (standardized B= -0.577, P= 0.001) and young age at diagnosis (standardized B= -0.427, P= 0.014). Conclusions: Cranial radiation in pediatric brain tumors is associated with a decline in multiple neurocognitive functions including total IQ, visual memory, and attention; which are related to the toxic effect of cranial radiation on white matter of the brain especially in young age of childhood with high dose and whole cranial radiation. No significant financial relationships to disclose.


2021 ◽  
Author(s):  
Kimberly M Stanke ◽  
Carrick Wilson ◽  
Srivatsan Kidambi

Glioblastoma (GBM), the most aggressive brain tumor, is associated with a median survival at diagnosis of 16-20 months and limited treatment options. The key hallmark of GBM is altered tumor metabolism and marked increase in the rate of glycolysis. Aerobic glycolysis along with elevated glucose consumption and lactate production supports rapid cell proliferation and GBM growth. In this study, we examined the gene expression profile of metabolic targets in GBM samples from patients with low grade glioma (LGG) and GBM. We found that gene expression of glycolytic enzymes is up-regulated in GBM samples and significantly associated with an elevated risk for developing GBM. Our findings of clinical outcomes showed that GBM patients with high expression of HK2 and PKM2 in the glycolysis related genes and low expression of genes involved in mitochondrial metabolism-SDHB and COX5A related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), respectively, was associated with poor patient overall survival. Surprisingly, expression levels of genes involved in mitochondrial oxidative metabolism are markedly increased in GBM compared to LGG but was lower compared to normal brain. The fact that in GBM the expression levels of TCA cycle and OXPHOS-related genes are higher than those in LGG patients suggests the metabolic shift in GBM cells when progressing from LGG to GBM. These results are an important step forward in our understanding of the role of metabolic reprogramming in glioma as drivers of the tumor and could be potential prognostic targets in GBM therapies.


2020 ◽  
Vol 3 ◽  
Author(s):  
Eric Chen ◽  
Chang Ho ◽  
Benjamin Gray ◽  
Jason Parker ◽  
Emily Diller ◽  
...  

Background/Objective: Brain tumors are the most common solid cancer in children and cause significant mortality and morbidity. We compare the effectiveness of different parameters in predicting tumor grade between dynamic contrast enhancement (DCE), intravoxel incoherent motion (IVIM), dynamic susceptibility contrast (DSC) perfusion and diffusion weighted imaging (DWI).    Methods: A retrospective blinded review of pediatric brain tumors with DCE, IVIM, DWI, and DSC was performed. Parametric maps were registered to T2 weighted images. Volumetric regions of interest (ROI) were manually segmented from solid tumor components for each patient by a neuroradiologist (CH), neuroradiology fellow (BG), and medical student (EC). Resulting mean values for parameters from DCE (Ktrans, Kep, Ve, Vp,), IVIM (D, D*, f), DSC (rCBV) and DWI (ADC) were compared using Student’s t-test for high- and low-grade tumor groups based on WHO grading from pathology. For significant parameters, receiver operating characteristic (ROC) analysis with area under curve (AUC) was performed.     Results: 20 subjects were included with 9 low grade and 11 high grade tumors. Significant differences between low versus high grade were demonstrated for D (10−3 mm2/s) (1.4±0.4 vs 0.9±0.2, p=0.01), f (0.04±0.02 vs 0.07±0.02, p=0.02), ADC (10−3 mm2/s) (1.4±0.4 vs 0.9±0.3, p=0.009) and rCBV (2.2±0.9 vs 4.7±2.1, p=0.003). No significant difference was found for D* or any DCE parameter. AUC from ROC was similar for all significant parameters [D (0.81, p=0.003); f (0.80, p=0.003); ADC (0.83, p=0.001); rCBV (0.83, p=0.0005)].    Conclusion: D and f parameters from IVIM can significantly differentiate high versus low grade pediatric brain tumors similar to ADC and rCBV. Conversely, no DCE parameter was significant.    Scientific Implications: The results will assist the selection of MRI sequences that best predict tumor grade, as well as guide tumor biopsy for the most aggressive tumor portions. Further study of these techniques may correlate with molecular profiling and predict outcome. 


2015 ◽  
Vol 17 (suppl 3) ◽  
pp. iii19-iii19
Author(s):  
C. D. Antonuk ◽  
R. Levy ◽  
J. Molina ◽  
M. Danielpour ◽  
A. Akhtar ◽  
...  

2008 ◽  
Vol 88 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Joannes F. M. Jacobs ◽  
Oliver M. Grauer ◽  
Francis Brasseur ◽  
Peter M. Hoogerbrugge ◽  
Pieter Wesseling ◽  
...  

2009 ◽  
Vol 46 (1) ◽  
pp. 37-42 ◽  
Author(s):  
John R. Crawford ◽  
Maria R. Santi ◽  
Halldora K. Thorarinsdottir ◽  
Robert Cornelison ◽  
Elisabeth J. Rushing ◽  
...  

2015 ◽  
Vol 02 (04) ◽  
pp. 301-305
Author(s):  
Jens Jensen ◽  
Vitria Adisetiyo ◽  
Els Fieremans ◽  
Joseph Helpern ◽  
Matthias Karajannis ◽  
...  

Author(s):  
Güleç Mert Doğan ◽  
Ahmet Sığırcı ◽  
Sevgi Taşolar ◽  
Aslınur Cengiz ◽  
Hilal Er Ulubaba ◽  
...  

INTRODUCTION: The motion of water particles within biological tissues, which is called random Brownian motion, is detected at the microscopic level by Diffusion-Weighted Imaging (DWI) sequence of Magnetic Resonance Image technique. The Apparent Diffusion Coefficient (ADC) calculated on DWI has been used for tumor diagnosis and grading. The purpose of this study was to evaluate of ADC values in the differential diagnosis of supratentorial and infratentorial pediatric brain tumors and to reveal the difference of peritumoral ADC measurements of pediatric patients from adult patients. METHODS: All of the 56 pediatric patients included in this retrospective study had lesions >1 cm in diameter on magnetic resonance image and all of the diagnosies were confirmed by histopathology. Intratumoral and peritumoral ADC values and ratios were measured in diffusion weighted Magnetic Resonance Image. RESULTS: The 58.9% (n=33) of these tumors were supratentorial and 41.1% (n=23) were infratentorial. ADC values and ADC ratios were significantly lower in high-grade tumors than low-grade tumors (p<0.05). Peritumoral ADC values in high-grade tumors were lower than low grade tumors (p<0.05). The cut-off value of the ADC ratio between these two groups was 1 and the ADC cut-off value was 1.1*10-3 mm2/s. DISCUSSION AND CONCLUSION: In the differentiation of low and high-grade pediatric brain tumors, cut-off values of 1.1*10_3mm2/s for ADC Value and 1.0 for ADC Ratio may be useful. Although, peritumoral ADC values differ in children compared to the adult group, both intratumoral and peritumoral ADC values can help for grading pediatric brain tumors.


Sign in / Sign up

Export Citation Format

Share Document