scholarly journals Line × Tester Mating Design Analysis for Grain Yield and Yield Related Traits in Bread Wheat (Triticum aestivumL.)

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zine El Abidine Fellahi ◽  
Abderrahmane Hannachi ◽  
Hamenna Bouzerzour ◽  
Ammar Boutekrabt

Nine bread wheat (Triticum aestivumL.) genotypes were crossed in a line × tester mating design. The 20 F1's and their parents were evaluated in a randomized complete block design with three replications at the Field Crop Institute-Agricultural Experimental Station of Setif (Algeria) during the 2011/2012 cropping season. The results indicated that sufficient genetic variability was observed for all characters studied. A899 × Rmada, A899 × Wifak, and A1135 × Wifak hybrids had greater grain yield mean than the parents. A901line and the tester Wifak were good combiners for the number of grains per spike. MD is a good combiner for 1000-kernel weight and number of fertile tillers. HD1220is a good general combiner to reduce plant height; Rmada is a good general combiner to shorten the duration of the vegetative growth period. A901 × Wifak is a best specific combiner to reduce plant height, to increase 1000-kernel weight and number of grains per spike. AA × MD is a best specific combiner to reduce duration of the vegetative period, plant height and to increase the number of kernels per spike. A899 × Wifak showed the highest heterosis for grain yield, accompanied with positive heterosis for the number of fertile tillers and spike length, and negative heterosis for 1000-kernel weight and the number of days to heading.σgca2/σsca2,  (σD2/σA2)1/2low ratios and low to intermediate estimates of h2nssupported the involvement of both additive and nonadditive gene effects. The preponderance of non-additive type of gene actions clearly indicated that selection of superior plants should be postponed to later generation.

Author(s):  
Soleman M. Al-Otayk

The present study was carried out to evaluate agronomic traits and assessment of genetic variability of some wheat genotypes at Qassim region, Saudi Arabia', during 2010/11 and2011/12 seasons. Fourteen wheat genotypes including five bread wheat and nine durum wheat genotypes were evaluated in randomized complete block design with three replications. The genotypes were evaluated for ten different yield contributing characters viz., days to heading, days to maturity, grain filling period, grain filling rate, plant height, number of spikes m-2, kernels spike-1, 1000-kernel weight, grain yield and straw yield. The combined analysis of variance indicated the presence of significant differences between years for most characters. The genotypes exhibited significant variation for all the characters studied indicating considerable amount of variation among genotypes for each character. Maximum coefficient of variation was observed for number of spikes m-2 (17%), while minimum value was found for days to maturity. Four genotypes produced maximum grain yield and statistically similar, out of them two bread wheat genotypes (AC-3 and SD12) and the other two were durum wheat (AC-5 and BS-1). The genotypes AC-3, AC-5 and BS-1 had higher grain yield and stable in performance across seasons. The estimation of phenotypic coefficient of variation in all the traits studied was greater than those of the genotypic coefficient of variation. High heritability estimates (> 0.5) were observed for days to heading, days to maturity, and plant height, while the other characters recorded low to moderate heritability. The high GA % for plant height and days to heading (day) was accompanied by high heritability estimates, which indicated that heritability is mainly due to genetic variance. Comparatively high expected genetic advances were observed for grain yield components such as number of kernels spike-1 and 1000-kernel weight. Grain yield had the low heritability estimate with a relatively intermediate value for expected genetic advance. The results of principle component analysis (PCA) indicated that the superior durum wheat genotypes for grain yield in the two seasons (AC-5 and BS-1) are clustered in group II (Fig. 2). Also, the superior two bread wheat genotypes (AC-3 and SD12) were in group I. Therefore, it could be future breeding program to develop new high yielding genotypes in bread and durum wheat.


2020 ◽  
Vol 73 (2) ◽  
pp. 9131-9141
Author(s):  
Zine El Abidine Fellahi ◽  
Abderrahmane Hannachi ◽  
Hamenna Bouzerzour

This study aimed at evaluating the expected gains from selection obtained based upon direct, indirect, and index-based selection in a set of 599 bread wheat lines. The experiment was carried out at the experimental field of INRAA institute, Setif research unit (Algeria), in a Federer augmented block design including three controls. A wide range of genetic variability was observed among lines for the eleven traits assessed. The results indicated that index-based selection and selection based on grain yield expressed higher expected genetic gain than direct and indirect mono-trait-based selection. The best 15 selected lines exhibited higher grain yield than the control varieties, and they were clustered in three groups that contrasted mainly for the flag-leaf area, thousand-kernel weight, biomass, and harvest index. The index-based selection appears as a useful tool for the rapid selection of early filial generations, enriching selected breeding materials with desirable alleles and reducing the number of years required to combine these traits in elite varieties.


2020 ◽  
Vol 5 (3) ◽  
pp. 1
Author(s):  
Jabeen Farheen ◽  
Farzana Nasir Naqvi

The experiment was conducted to classify the maximum glutenin protein possessed Pakistani bread wheat genotype for superlative chapati making quality by ten yield-related parameters. The studied germplasm was acquired from NARC, Pakistan, and planted in randomized-complete-block-design with four replicates at the screen house of the Genetics Department. Data were assessed via Duncan’s test, correlation analysis, SDS-PAGE, and cluster analysis. Duncan’s test conceded that Pirsabak-85 had the highest plant height, flag leaf area, biomass, grain yield plantˉ1, harvest index, and protein content. While, the correlation studies showed that plant height, tillers plantˉ1 (r = 0.649), fertile tillers plantˉ1 (r = 0.713),biomass (r = 0.861), spike length (LS), thousand-grain weight and harvest index had a positive higher significant association with grain yield plantˉ1. The SDS-PAGE analysis resolved 30 diverse high and low molecular weight bands, ranging from 200 kDa to 28 kDa glutenin subunits. Among genotypes, Pirsabak-85 showed maximum protein content and 10 Glu-1 scores. The dendrogram analysis revealed that Pirsabak-85 associated with cluster-II, which was a major and most diverged cluster. The Pirsabak-85 can be utilized to enhance bread wheat production and better chapati making quality


2001 ◽  
Vol 49 (3) ◽  
pp. 237-242 ◽  
Author(s):  
K. Z. Korkut ◽  
I. BAŞER ◽  
O. Bilgin

This research was conducted to determine the effect of genetic and phenotypic variability on the yield and yield components of some bread wheat varieties over a period of four years (1995–1998). Experiments were established according to a completely randomised block design with three replicates in the Experimental Field of Tekirda đ Agricultural Faculty, Thrace University. In the present research, genotypic and phenotypic variability, heritability and phenotypic correlation coefficients were estimated for plant height, spike length, number of spikelets per spike, number of spikes per square metre, thousand kernel weight, test weight and grain yield per hectare. The results of data analyses showed that the highest genotypic variability was obtained for per hectare yield, whereas the highest phenotypic variability values were found for plant height, thousand kernel weight and grain yield. For plant height, thousand grain yield and test weight, the broad sense heritability coefficient was found to be the highest, while it was low for spike length, number of spikelets per spike and number of Key words: bread wheat, genotypic variability, phenotypic variability, heritability coefficient, phenotypic correlation, grain yield


2021 ◽  
Vol 22 (3) ◽  
pp. 289-298
Author(s):  
Amitava Roy ◽  
Anil Kumar ◽  
Vaishali Rawat ◽  
Anu Singh

The present research investigation was conducted in order to analyze combining ability and nature of gene actions in 33 F1s of bread wheat (Triticum aestivum L. em. Thell) developed by crossing eleven lines with three testers in a line x tester mating design in terms of grain yield and associated traits. The hybrids along with the parental lines and two check varieties were planted in a randomized block design in three replications. Variance ratio between general and specific combining ability was found to be less than unity which indicated the prevalence of non-additive gene actions involved in the inheritance of these characters. Parental lines QLD 75 (3.164), followed by SOKOLL (2.888) and QLD 65 (2.819) exhibited significant GCA for grain yield, while another line PRL/2*PASTOR*2//FH6-1-7/3/KINGBIRD#1//… was observed to be the better general combiner for most other traits including maturity. Among the hybrids cross combination NAC/TH.AC//3*PVN/3/MIRLO/BUC/4/2*PASTOR/5/…x HD 3237 showed significant higher positive SCA for grain yield and biological yield per plant, whereas, F1 QLD 75 x HI 1621was a good specific combiner for harvest index (%) and number of grains per spike. The cross combination VORB/4/D67.2/PARANA66.270 x PBW 725 was observed with significant higher positive SCA for days to 75% heading, days to maturity and plant height, and another hybrid VORB/4/D67.2/PARANA 66.270 x HI 1621 exhibited significant positive SCA for 1000 grain weight and spike length.


2020 ◽  
pp. 5-14
Author(s):  
Maamoun A. Abdel-Moneam ◽  
M. S. Sultan ◽  
Waleed A. E. Abido ◽  
Ágnes Hadházy ◽  
S. A. Sadek ◽  
...  

Combining ability estimation is an important genetic attribute for maize breeders in anticipating improvement in productivity via hybridization and selection. This research was carried out to investigate the genetic structure of the 27 F1 maize hybrids established from nine lines derived from Maize Research Department and three testers, to determine general combining ability (GCA), determine crosses showing specific combining ability (SCA) and superiority percentages for crosses. Nine lines, three testers, 27 F1 hybrids and two check commercial hybrids (SC162 and SC168) were studied in randomized complete block Design (RCBD) with three replications during 2016. The results of mean squares showed that significant and highly significant for most studied traits (days to 50% tasseling, days to 50% silking, plant and ear height, ear position, ear length, no. of kernels per row, 100-kernel weight and Grain yield). Estimates of variance due to GCA and SCA and their ratio revealed predominantly non-additive gene effects for all studied traits. Lines with the best GCA effects were: P2 (line 11) and P6 (line 21) for grain yield, for testers Gm174 and Gm1021 had significant GCA effects for grain yield. The hybrids P5×Gm1021, P6×Gm1021, P7×Gm1021, P8×Gm1002, P9×Gm1002 had significant and negative SCA effects for grain yield. Crosses P1×Gm174, P2×Gm1002, P5×Gm1021, P6×Gm174, P6×Gm1021, P7×Gm1021, P8×Gm1002, P9×Gm1021 were the best combinations manifested and significant superiority percentages over than check varieties (SC162 and SC168) for most studied traits. Therefore, these hybrids may be preferred for hybrid crop development. Abbreviations: GCA general combining ability; SCA specific combining ability


2000 ◽  
Vol 48 (3) ◽  
pp. 251-256
Author(s):  
O. Bilgin ◽  
A. Y. Bilgin ◽  
T. Gençtan ◽  
I. BAŞER

Received: 14 February, 2000; accepted: 29 August, 2000 In this research, three bread wheat varieties were sown at six different plant densities in the experimental field of Tekirda đ Agricultural Faculty according to a split-plot randomised block design. A range of characters such as number of tillers per plant, number of spikes per plant, grain weight of tillers per plant, plant height, harvest index, plant yield and grain yield per hectare were investigated. The results of variance analysis showed that the effects of sowing rate and variety and their interaction on number of tillers per plant, plant height and grain yield per hectare were all significant. In addition, the effect of plant density on grain weight per tillers, grain yield per plant and number of spikes per plant was significant, whereas the effect of variety was only significant on harvest index. It was found that the number of fertile tillers per plant was the most suitable character as a selection criterion for improving grain yield in the Thrace Region. According to path analysis the direct and indirect effects of the measured characters on grain yield per plant and grain yield per hectare showed that the number of spikes per plant, harvest index, grain weight of tillers per plant and plant height had a direct positive effect on grain yield per plant. However, the number of spikes per plant and the number of tillers per plant had a negative effect on grain yield per hectare, while the harvest index and grain yield per plant had a positive direct effect.


2012 ◽  
Vol 40 (1) ◽  
pp. 195 ◽  
Author(s):  
Mohtasham MOHAMMADI ◽  
Peyman SHARIFI ◽  
Rahmatollah KARIMIZADEH ◽  
Mohammad Kazem SHEFAZADEH

Path and correlation analysis were executed to investigate the relationships between grain yield and other important yield components in bread wheat (Triticum aestivum L.) genotypes during two years (2009-2011) under supplemental irrigation and dryland conditions. Field experiments were performed in a randomized complete block design with four replications. Grain yield showed positive correlation with plant height and test weight under supplemental irrigation condition. The similar results were also revealed between grain yield and plant height, spike length, days to maturity, agronomic score and test weight in dryland environment. The grain yield of bread wheat in dryland condition depended on the effect of plant height, days to maturity, agronomic score and 1000 kernel weight, whereas in supplemental irrigation was mainly related to plant height, spike length, 1000 kernel weight and test weight. The influence of 1000 kernel weight on grain yield in both environments seems to cause from the fact that grain yield in wheat is frequently the sink limited, and for this reason, the 1000 kernel weight has been reported as a promising trait for increasing grain yield in wheat under different conditions. The nearly equal value of correlation and path coefficients of plant height and grain yield showed plant height had positive and direct effect on grain yield, in both conditions and suggesting a criteria trait for improving of grain yield. The results showed that genotype 12 (CS/TH.SC//3*PVN/3/MIRLO/BUC/4/MILAN/5/ TILHI) is a high yielding potential genotype in moisture limited conditions.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Temesgen Godebo ◽  
Fanuel Laekemariam ◽  
Gobeze Loha

AbstractBread wheat (Triticum aestivum L.) is one of the most important cereal crops in Ethiopia. The productivity of wheat is markedly constrained by nutrient depletion and inadequate fertilizer application. The experiment was conducted to study the effect of nitrogen (N) and potassium (K) fertilizer rates on growth, yield, nutrient uptake and use efficiency during 2019 cropping season on Kedida Gamela Woreda, Kembata Tembaro Zone Southern Ethiopia. Factorial combinations of four rates of N (0, 23, 46 and 69 kg Nha−1) and three rates of K2O (0, 30 and 60 kg Nha−1) in the form of urea (46–0-0) and murate of potash (KCl) (0-0-60) respectively, were laid out in a randomized complete block design with three replications. The results showed that most parameters viz yield, yield components, N uptake and use efficiency revealed significant differences (P < 0.05) due to interaction effects of N and K. Fertilizer application at the rate of 46 N and 30 kg K ha−1 resulted in high grain yield of 4392 kg ha− 1 and the lowest 1041 from control. The highest agronomic efficiency of N (52.5) obtained from the application of 46 kg N ha−1. Maximum physiological efficiency of N (86.6 kg kg−1) and use efficiency of K (58.6%) was recorded from the interaction of 46 and 30 kg K ha−1. Hence, it could be concluded that applying 46 and 30 kg K ha−1was resulted in high grain yield and economic return to wheat growing farmers of the area. Yet, in order to draw sound conclusion, repeating the experiment in over seasons and locations is recommended.


2010 ◽  
Vol 28 (1) ◽  
pp. 77-85 ◽  
Author(s):  
P.S.L. Silva ◽  
K.M.B. Silva ◽  
P.I.B. Silva ◽  
V.R. Oliveira ◽  
J.L.B. Ferreira

The reduction in herbicide use is one of the greatest interests for modern agriculture and several alternatives are being investigated with this objective, including the adoption of cultivars that suppress weeds. The objective of this study was to verify if maize cultivars develop differently, in competition with weeds, to produce green ears and grain. Randomized complete block design was used, with split-plots and five replications. Cultivars DKB 390, DKB 466, DKB 350, AG 7000, AG 7575 and Master, were evaluated in the plots, without weeding and two weedings (at 22 and 41 days after sowing) in sub plots. Twenty-one species were identified in the experimental area, the most frequent being Gramineae (Poaceae), Euphorbiaceae, Leguminosae (Fabaceae) and Convolvulaceae species. There was no difference in the dry biomass above-ground part of the weeds in the plots of the evaluated cultivars. The cultivars behaved similarly in treatments with or without hoeing, except for plant height and ear height evaluations. Without hoeing, plant height increased in cultivar DKB 390, while plant height and ear height decreased in cultivar AG 7575. In the other cultivars, these traits did not change under weed control. The presence of weeds decreased the values of all traits employed to assess green corn yield, with the exception of the total number of green ears and grain yield.


Sign in / Sign up

Export Citation Format

Share Document