scholarly journals Nanoscale Phenomena Occurring during Pyrolysis of Salix viminalis Wood

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Aleksandra W. Cyganiuk ◽  
Roman Klimkiewicz ◽  
Andrzej Olejniczak ◽  
Anna Kucińska ◽  
Jerzy P. Łukaszewicz

Selective utilisation of unique properties of Salix viminalis wood enables preparation of materials of nanotechnologic properties. Thermal decomposition of lignin-cellulose organic matter results in the formation of a nanostructured porous carbon matrix (charcoal). Narrowed pore size distribution (PSD) in the subnanometer range allows to consider the charcoals as carbon molecular sieves (CMSs), which are capable of separating even chemically inert gases like neon, krypton, and nitrogen. High tolerance of Salix viminalis to heavy metal ions enables enriching living plant tissues with metal ions like lanthanum and manganese. Such ions may later form LaMnO3 with parallel transformation of plant tissues (organic matter) to carbon matrix using a heat treatment. In this way, one gets a hybrid material: a porous carbon matrix with uniformly suspended nanocrystallites of LaMoO3. The crystallites are in the catalytically active phase during the conversion of n-butanol to heptanone-4 with high yield and selectivity.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1460
Author(s):  
Khadega A. Al-Maqdi ◽  
Muhammad Bilal ◽  
Ahmed Alzamly ◽  
Hafiz M. N. Iqbal ◽  
Iltaf Shah ◽  
...  

As a result of their unique structural and multifunctional characteristics, organic–inorganic hybrid nanoflowers (hNFs), a newly developed class of flower-like, well-structured and well-oriented materials has gained significant attention. The structural attributes along with the surface-engineered functional entities of hNFs, e.g., their size, shape, surface orientation, structural integrity, stability under reactive environments, enzyme stabilizing capability, and organic–inorganic ratio, all significantly contribute to and determine their applications. Although hNFs are still in their infancy and in the early stage of robust development, the recent hike in biotechnology at large and nanotechnology in particular is making hNFs a versatile platform for constructing enzyme-loaded/immobilized structures for different applications. For instance, detection- and sensing-based applications, environmental- and sustainability-based applications, and biocatalytic and biotransformation applications are of supreme interest. Considering the above points, herein we reviewed current advances in multifunctional hNFs, with particular emphasis on (1) critical factors, (2) different metal/non-metal-based synthesizing processes (i.e., (i) copper-based hNFs, (ii) calcium-based hNFs, (iii) manganese-based hNFs, (iv) zinc-based hNFs, (v) cobalt-based hNFs, (vi) iron-based hNFs, (vii) multi-metal-based hNFs, and (viii) non-metal-based hNFs), and (3) their applications. Moreover, the interfacial mechanism involved in hNF development is also discussed considering the following three critical points: (1) the combination of metal ions and organic matter, (2) petal formation, and (3) the generation of hNFs. In summary, the literature given herein could be used to engineer hNFs for multipurpose applications in the biosensing, biocatalysis, and other environmental sectors.


2021 ◽  
pp. 116549
Author(s):  
Anjani R.K. Gollakota ◽  
Venkata Subbaiah Munagapati ◽  
Krishna Prasad Shadangi ◽  
Guda Mallikarjuna Reddy ◽  
Jet-Chau Wen ◽  
...  

2011 ◽  
Vol 4 (3) ◽  
pp. 257-270 ◽  
Author(s):  
T. Baldwin ◽  
R. Riley ◽  
N. Zitomer ◽  
K. Voss ◽  
R. Coulombe Jr. ◽  
...  

Filamentous fungi that contaminate livestock feeds and human food supply often produce toxigenic secondary metabolites known as mycotoxins. Among the hundreds of known mycotoxins, aflatoxins, deoxynivalenol, fumonisins, ochratoxin A and zearalenone are considered the most commercially important. Intense research on these mycotoxins, especially aflatoxin, has resulted in the development of 'biomarkers' used to link exposure to disease risk. In the case of aflatoxin this effort has led to the discovery of both exposure and mechanism-based biomarkers, which have proven essential for understanding aflatoxin's potential for causing disease in humans, including subtle effects on growth and immune response. Fumonisin biomarkers have also been used extensively in farm and laboratory animals to study the fumonisin-induced disruption of cellular and systemic physiology which leads to disease. This review summarises the status of mycotoxin biomarker development in humans and animals for the commercially important mycotoxins. Since the fungi responsible for the production of these mycotoxins are often endophytes that infect and colonise living plant tissues, accumulation of mycotoxins in the plant tissues may at times be associated with development of plant disease symptoms. The presence of mycotoxins, even in the absence of disease symptoms, may still have subtle biological effects on the physiology of plants. This review examines the question of whether or not the knowledge gained from mechanistic studies and development of biomarkers in animal and human systems is transferable to the study of mycotoxin effects on plant systems. Thus far, fumonisin has proven amenable to development of mechanism-based biomarkers to study maize seedling disease caused by the fumonisin producer, Fusarium verticillioides. Expanding our knowledge of mechanisms of toxicity and the overt and subtle effects on animal, human, and plant systems through the identification and validation of biomarkers will further our ability to monitor and limit the damage and economic impact of mycotoxins.


2017 ◽  
Vol 5 (34) ◽  
pp. 18221-18229 ◽  
Author(s):  
Chu Liang ◽  
Sheng Liang ◽  
Yang Xia ◽  
Yun Chen ◽  
Hui Huang ◽  
...  

An environmentally benign and high-yield route is developed to synthesize hierarchical porous carbon for high-density energy storage.


Sign in / Sign up

Export Citation Format

Share Document