The current state of mycotoxin biomarker development in humans and animals and the potential for application to plant systems

2011 ◽  
Vol 4 (3) ◽  
pp. 257-270 ◽  
Author(s):  
T. Baldwin ◽  
R. Riley ◽  
N. Zitomer ◽  
K. Voss ◽  
R. Coulombe Jr. ◽  
...  

Filamentous fungi that contaminate livestock feeds and human food supply often produce toxigenic secondary metabolites known as mycotoxins. Among the hundreds of known mycotoxins, aflatoxins, deoxynivalenol, fumonisins, ochratoxin A and zearalenone are considered the most commercially important. Intense research on these mycotoxins, especially aflatoxin, has resulted in the development of 'biomarkers' used to link exposure to disease risk. In the case of aflatoxin this effort has led to the discovery of both exposure and mechanism-based biomarkers, which have proven essential for understanding aflatoxin's potential for causing disease in humans, including subtle effects on growth and immune response. Fumonisin biomarkers have also been used extensively in farm and laboratory animals to study the fumonisin-induced disruption of cellular and systemic physiology which leads to disease. This review summarises the status of mycotoxin biomarker development in humans and animals for the commercially important mycotoxins. Since the fungi responsible for the production of these mycotoxins are often endophytes that infect and colonise living plant tissues, accumulation of mycotoxins in the plant tissues may at times be associated with development of plant disease symptoms. The presence of mycotoxins, even in the absence of disease symptoms, may still have subtle biological effects on the physiology of plants. This review examines the question of whether or not the knowledge gained from mechanistic studies and development of biomarkers in animal and human systems is transferable to the study of mycotoxin effects on plant systems. Thus far, fumonisin has proven amenable to development of mechanism-based biomarkers to study maize seedling disease caused by the fumonisin producer, Fusarium verticillioides. Expanding our knowledge of mechanisms of toxicity and the overt and subtle effects on animal, human, and plant systems through the identification and validation of biomarkers will further our ability to monitor and limit the damage and economic impact of mycotoxins.

2021 ◽  
Vol 22 (5) ◽  
pp. 2435
Author(s):  
Marzia Beccaccioli ◽  
Manuel Salustri ◽  
Valeria Scala ◽  
Matteo Ludovici ◽  
Andrea Cacciotti ◽  
...  

Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.


2021 ◽  
Vol 29 (5) ◽  
pp. 25-33
Author(s):  
Vadzim Michailovich Vasilkevich ◽  
Ruslan Valerievich Bogdanov ◽  
Ksenia Sergeevna Gilevskaya ◽  
Victoria Igorevna Kulikouskaya

Introduction. Nanocomposites synthesized by the “green chemistry” method do not contain toxic chemicals (reducing agents and organic solvents) as carriers and/or stabilizing shells. One of the representatives of this group of materials are nanocomposites based on silver, which are increasingly used in medical practice, veterinary medicine, and in some other fields. Material and methods. The nanocomposite is Ag0 nanoparticles coated with a highly methoxylated pectin shell. The concentration of Ag0 nanoparticles in the hydrosol of the pectin-Ag nanocomposite is 1.65 mmol/l, and the pectin content is 7.5 mg/ml. The size of the synthesized pectin-Ag nanocomposite is ~20-30 nm, more than 90% of the particles have a diameter of less than 20 nm, the value of the ξ-potential is 45.3 ± 0.7 mV. Toxicological studies were carried out on outbred rats. The main goal of the research was to study the toxic effects of the pectin-Ag nanocomposite in a subchronic experiment (90 days). At the end of the experiment, a complex of behavioral and clinical and laboratory parameters was determined, which made it possible to assess the biological effect of the nanocomposite on animals. The research results were statistically processed. Results. With subchronic intragastric administration of the pectin-Ag nanocomposite to laboratory animals (rats) for 3 months at doses of 50, 500, and 5000 mg/kg, it was found that the nanocomposite exhibits a dose-dependent general toxic effect with critical target organs - the liver and spleen and the main biochemical markers of toxicity effect - aminotransferase, alkaline phosphatase and lactate dehydrogenase. Conclusion. Experimental studies have made it possible to substantiate the threshold doses of the hydrosol of the pectin-Ag nanocomposite for the intragastric route of intake.


1973 ◽  
Vol 5 ◽  
pp. 101-109 ◽  
Author(s):  
M W Harris ◽  
J A Moore ◽  
J G Vos ◽  
B N Gupta

Toxics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 37
Author(s):  
Robert J. Turesky ◽  
Kun Lu

Biomarkers of environmental toxicants are measures of exposures and effects, some of which can serve to assess disease risk and interindividual susceptibilities [...]


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Aleksandra W. Cyganiuk ◽  
Roman Klimkiewicz ◽  
Andrzej Olejniczak ◽  
Anna Kucińska ◽  
Jerzy P. Łukaszewicz

Selective utilisation of unique properties of Salix viminalis wood enables preparation of materials of nanotechnologic properties. Thermal decomposition of lignin-cellulose organic matter results in the formation of a nanostructured porous carbon matrix (charcoal). Narrowed pore size distribution (PSD) in the subnanometer range allows to consider the charcoals as carbon molecular sieves (CMSs), which are capable of separating even chemically inert gases like neon, krypton, and nitrogen. High tolerance of Salix viminalis to heavy metal ions enables enriching living plant tissues with metal ions like lanthanum and manganese. Such ions may later form LaMnO3 with parallel transformation of plant tissues (organic matter) to carbon matrix using a heat treatment. In this way, one gets a hybrid material: a porous carbon matrix with uniformly suspended nanocrystallites of LaMoO3. The crystallites are in the catalytically active phase during the conversion of n-butanol to heptanone-4 with high yield and selectivity.


2001 ◽  
Vol 20 (3) ◽  
pp. 250-255 ◽  
Author(s):  
K.R. Finer ◽  
K.M. Larkin ◽  
B.J. Martin ◽  
J.J. Finer

2012 ◽  
Vol 63 (4) ◽  
pp. 437-446 ◽  
Author(s):  
Agnieszka Waśkiewicz ◽  
Łukasz Stępień

AbstractThere is little information on secondary metabolites produced by Fusaria infecting crop plants other than cereals. Many members of Fusarium genus have the ability to colonise perennial crops with only scarce infection or disease symptoms or with no symptoms at all while still being detectable. Even in case of such asymptomatic infection, significant mycotoxin contamination of the plant tissues is possible. The aim of this study was to characterise the spectrum of Fusarium species isolates obtained from different plant hosts (like asparagus, garlic, pineapple, banana, rhubarb, peppers, rice, maize, wheat, and oncidium) and evaluate their ability to biosynthesize the most common mycotoxins in vitro. Among the F.proliferatum isolates, up to 57 % of them biosynthesized fumonisins at very high mass fractions, amounting to above 1000 μg g-1, while other Fusarium species such as F. verticillioides, F. lactis, F. polyphialydicum, F. concentricum, F. temperatum, and F. fujikuroi formed fumonisins mostly at much lower level. Only F.ananatum and F. oxysporum did not produce these toxins. Co-occurrence of FBs with other mycotoxins [moniliformin (MON) and beauvericin (BEA)] was often observed and it was mainly F. proliferatum species that formed both mycotoxins (0.4 μg g-1 to 41.1 μg g-1 BEA and 0.1 μg g-1 to 158.5 μg g-1 MON).


2017 ◽  
Author(s):  
F. Pax C. Blamey ◽  
David J. Paterson ◽  
Adam Walsh ◽  
Nader Afshar ◽  
Brigid A. McKenna ◽  
...  

SummaryKnowledge of elemental distribution and concentration within plant tissues is crucial in the understanding of almost every process that occurs within plants. However, analytical limitations have hindered the microscopic determination of changes over time in the location and concentration of nutrients and contaminants in living plant tissues.We developed a novel method using synchrotron-based micro X-ray fluorescence (μ-XRF) that allows for laterally-resolved, multi-element, kinetic analyses of plant leaf tissues in vivo. To test the utility of this approach, we examined changes in the accumulation of Mn in unifoliate leaves of 7-d-old cowpea (Vigna unguiculata) plants grown for 48 h at 0.2 and 30 μM Mn in solution.Repeated μ-XRF scanning did not damage leaf tissues demonstrating the validity of the method. Exposure to 30 μM Mn for 48 h increased the initial number of small spots of localized high Mn and their concentration rose from 40 to 670 mg Mn kg-1 fresh mass. Extension of the two-dimensional μ-XRF scans to a three-dimensional geometry provided further assessment of Mn localization and concentration.This method shows the value of synchrotron-based μ-XRF analyses for time-resolved in vivo analysis of elemental dynamics in plant sciences.


2017 ◽  
Vol 67 (3) ◽  
pp. 316-319 ◽  
Author(s):  
Tomoko M. Matsunaga ◽  
Daisuke Ogawa ◽  
Fumio Taguchi-Shiobara ◽  
Masao Ishimoto ◽  
Sachihiro Matsunaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document