scholarly journals An MBS-Assisted Femtocell Transmit Power Control Scheme with Mobile User QoS Guarantee in 2-Tier Heterogeneous Femtocell Networks

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jenhui Chen ◽  
Chih-Cheng Yang ◽  
Shiann-Tsong Sheu

This study investigates how to adjust the transmit power of femto base station (FBS) to mitigate interference problems between the FBSs and mobile users (MUs) in the 2-tier heterogeneous femtocell networks. A common baseline of deploying the FBS to increase the indoor access bandwidth requires that the FBS operation will not affect outdoor MUs operation with their quality-of-service (QoS) requirements. To tackle this technical problem, anFBS transmit power adjustment(FTPA) algorithm is proposed to adjust the FBS transmit power (FTP) to avoid unwanted cochannel interference (CCI) with the neighboring MUs in downlink transmission. FTPA reduces the FTP to serve its femto users (FUs) according to the QoS requirements of the nearest neighboring MUs to the FBS so that the MU QoS requirement is guaranteed. Simulation results demonstrate that FTPA can achieve a low MU outage probability as well as serve FUs without violating the MU QoS requirements. Simulation results also reveal that FTPA has better performance on voice and video services which are the major trend of future multimedia communication in the NGN.

2021 ◽  
Author(s):  
Joydev Ghosh

<div>Obtaining large spectral efficiency (SE) and energy efficiency (EE) subject to quality of experience (QoE) is one of the prime concerns for the wireless next generation networks, however a major confrontation with its trade-off which is becoming apparent while optimizing both SE and EE parameters concurrently. In this work, an analytical framework for a cognitive-femtocell network is proposed to be dealt with and overcome the situations regarded as unwelcome. Here, the conflict of SE-EE trade-off in downlink (DL) transmission is expressed methodically by Pareto Optimal Set (POS) based on a multi-empirical most effective use of a resource scheme as a function of femto base station (FBS) and macro base station (MBS) transmit power and base station (BS) density, respectively. Then, SE and EE are formulated in a utility function by applying Cobb-Douglas production function to transform the multi- mpirical difficulty into the single-empirical optimization case. Besides, it is analytically shown that the SE-EE trade-off can be optimize through a distinctive universal optimum among the Pareto optimal by fine tuning the weighting metric other than BS transmit power and density, respectively. Simulation results validate that it is possible to obtain the EE-SE trade-off with SINR threshold at different weighting factor.</div>


2014 ◽  
Vol 644-650 ◽  
pp. 4066-4071
Author(s):  
Xin Min Li

A new SLNR-based precoding is proposed for multiuser MIMO downlinks, which pursues the goal that minimizes total transmit power under each user’s SLNR constraint. The goal problems can be successfully solved by using semidefinite relaxation (SDR) techniques, and power constraint condition added in goal problems can efficiently reduce total transmit power of the base station. Simulation results show that our proposed scheme is almost feasible for users with one antenna, and it has better bit error rate (BER) and lower total transmit power than the maximal-SLNR based precoding method, when it satisfies large SLNR thretholds.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>Obtaining large spectral efficiency (SE) and energy efficiency (EE) subject to quality of experience (QoE) is one of the prime concerns for the wireless next generation networks, however a major confrontation with its trade-off which is becoming apparent while optimizing both SE and EE parameters concurrently. In this work, an analytical framework for a cognitive-femtocell network is proposed to be dealt with and overcome the situations regarded as unwelcome. Here, the conflict of SE-EE trade-off in downlink (DL) transmission is expressed methodically by Pareto Optimal Set (POS) based on a multi-empirical most effective use of a resource scheme as a function of femto base station (FBS) and macro base station (MBS) transmit power and base station (BS) density, respectively. Then, SE and EE are formulated in a utility function by applying Cobb-Douglas production function to transform the multi- mpirical difficulty into the single-empirical optimization case. Besides, it is analytically shown that the SE-EE trade-off can be optimize through a distinctive universal optimum among the Pareto optimal by fine tuning the weighting metric other than BS transmit power and density, respectively. Simulation results validate that it is possible to obtain the EE-SE trade-off with SINR threshold at different weighting factor.</div>


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1491
Author(s):  
Qi Li ◽  
Xiaoxiang Wang ◽  
Dongyu Wang ◽  
Yibo Zhang ◽  
Yanwen Lan ◽  
...  

The ubiquity of data-enabled mobile devices and wireless-enabled data applications has fostered the rapid development of wireless content caching, which is an efficient approach to mitigating cellular traffic pressure. Considering the content characteristics and real caching circumstances, a software-defined network (SDN)-based cooperative caching system is presented. First, we define a new file block library with heterogeneous content attributes [file popularity, mobile user (MU) preference, file size]. An SDN-based three-tier caching network is presented in which the base station supplies control coverage for the entire macrocell and cache helpers (CHs), MUs with cache capacities offer data coverage. Using the ‘most popular content’ and ‘largest diversity content’, a distributed cooperative caching strategy is proposed in which the caches of the MUs store the most popular contents of the file block library to mitigate the effect of MU mobility, and those of the CHs store the remaining contents in a probabilistic caching manner to enrich the content diversity and reduce the MU caching pressure. The request meet probability (RMPro) is subsequently proposed, and the optimal caching distribution of the contents in the probabilistic caching strategy is obtained via optimization. Finally, using the result of RMPro optimization, we also analyze the content retrieval delays that occur when a typical MU requests a file block or a whole file. Simulation results demonstrate that the proposed caching system can achieve quasi-optimal revenue performance compared with other contrasting schemes.


Author(s):  
Reyhane Mokhtarname ◽  
Ali Akbar Safavi ◽  
Leonhard Urbas ◽  
Fabienne Salimi ◽  
Mohammad M Zerafat ◽  
...  

Dynamic model development and control of an existing operating industrial continuous bulk free radical styrene polymerization process are carried out to evaluate the performance of auto-refrigerated CSTRs (continuous stirred tank reactors). One of the most difficult tasks in polymerization processes is to control the high viscosity reactor contents and heat removal. In this study, temperature control of an auto-refrigerated CSTR is carried out using an alternative control scheme which makes use of a vacuum system connected to the condenser and has not been addressed in the literature (i.e. to the best of our knowledge). The developed model is then verified using some experimental data of the real operating plant. To show the heat removal potential of this control scheme, a common control strategy used in some previous studies is also simulated. Simulation results show a faster dynamics and superior performance of the first control scheme which is already implemented in our operating plant. Besides, a nonlinear model predictive control (NMPC) is developed for the polymerization process under study to provide a better temperature control while satisfying the input/output and the heat exchanger capacity constraints on the heat removal. Then, a comparison has been also made with the conventional proportional-integral (PI) controller utilizing some common tuning rules. Some robustness and stability analyses of the control schemes investigated are also provided through some simulations. Simulation results clearly show the superiority of the NMPC strategy from all aspects.


2009 ◽  
Vol 23 (16) ◽  
pp. 2021-2034 ◽  
Author(s):  
XINGYUAN WANG ◽  
DA LIN ◽  
ZHANJIE WANG

In this paper, control of the uncertain multi-scroll critical chaotic system is studied. According to variable structure control theory, we design the sliding mode controller of the uncertain multi-scroll critical chaotic system, which contains sector nonlinearity and dead zone inputs. For an arbitrarily given equilibrium point of the uncertain multi-scroll chaotic system, we achieve global stabilization for the equilibrium points. Particularly, a class of proportional integral (PI) switching surface is introduced for determining the convergence rate. Furthermore, the proposed control scheme can be extended to complex multi-scroll networks. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0174220 ◽  
Author(s):  
Nak Woon Sung ◽  
Ngoc-Thai Pham ◽  
Thong Huynh ◽  
Won-Joo Hwang ◽  
Ilsun You ◽  
...  

2011 ◽  
Vol 328-330 ◽  
pp. 2108-2112
Author(s):  
Jing Shuang Lu ◽  
Chun Mei Du ◽  
Rui Zhou ◽  
Na Li

A simple dynamics model is established based on the two-link flexible manipulator moving within the vertical plane, and a robust simple control scheme is put forward. The advantages of this scheme are simple and good robustness. Only the error signal is needed when designing the control scheme and the acquirement of control signal does not depend on the system model. The simulation results show that this method has a good robustness and stability.


Author(s):  
S N Huang ◽  
K K Tan ◽  
T H Lee

A novel iterative learning controller for linear time-varying systems is developed. The learning law is derived on the basis of a quadratic criterion. This control scheme does not include package information. The advantage of the proposed learning law is that the convergence is guaranteed without the need for empirical choice of parameters. Furthermore, the tracking error on the final iteration will be a class K function of the bounds on the uncertainties. Finally, simulation results reveal that the proposed control has a good setpoint tracking performance.


Sign in / Sign up

Export Citation Format

Share Document