scholarly journals AntibacterialTiO2Coating Incorporating Silver Nanoparticles by Microarc Oxidation and Ion Implantation

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Zhang ◽  
Zhiguo Zhang ◽  
Wei Li

Infection associated with titanium implants remains the most common serious complication in hard tissue replacement surgery. Since such postoperative infections are usually difficult to cure, it is critical to find optimal strategies for preventing infections. In this study, TiO2coating incorporating silver (Ag) nanoparticles were fabricated on pure titanium by microarc oxidation and ion implantation. The antibacterial activity was evaluated by exposing the specimens toStaphylococcus aureusand comparing the reaction of the pathogens to Ti-MAO-Ag with Ti-MAO controls. Ti-MAO-Ag clearly inhibited bacterial colonization more than the control specimen. The coating’s antibacterial ability was enhanced by increasing the dose of silver ion implantation, and Ti-MAO-Ag20.0 had the best antibacterial ability. In addition, cytocompatibility was assessed by culturing cell colonies on the specimens. The cells grew well on both specimens. These findings indicate that surface modification by means of this process combining MAO and silver ion implantation is useful in providing antibacterial activity and exhibits cytocompatibility with titanium implants.

2020 ◽  
Vol 35 (6) ◽  
pp. 643-654
Author(s):  
Yicheng Cheng ◽  
Shenglin Mei ◽  
Xiangwei Kong ◽  
Xianghui Liu ◽  
Bo Gao ◽  
...  

Dental implants are the most innovative and superior treatment modality for tooth replacement. However, titanium implants still suffer from insufficient antibacterial capability and peri-implant diseases remain one of the most common and intractable complications. To prevent peri-implant diseases, a composite coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone (BBF) was fabricated on titanium. This study was designed to investigate the antibacterial activity of the composite coating against two common peri-implant pathogens ( Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans). The morphology of the composite coating showed that BBF-loaded poly(L-lactic acid) nanospheres were well-distributed in the pores of the microarc oxidation coating, and cross-linked with each other and the wall pores by gelatin. A release study indicated that the antibacterial coating could sustain the release of BBF for 60 d, with a slight initial burst release occurring during the first 4 h. The antibacterial rate of the composite coating for adhering bacteria was the highest (over 97%) after 1 d and over 90% throughout a 30-day incubation period. The total fluorescence intensity of the composite coating was the lowest, and the vast majority of the fluorescence was red (dead bacteria). Moreover, real-time polymerase chain reaction analysis confirmed that the relative gene expression of the adherent bacteria on the composite coating was down-regulated. It was therefore concluded that the composite coating fabricated on titanium, which showed excellent and relatively long-term antibacterial activity against Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans, is a potential and promising strategy to be applied on dental implants for the prevention of peri-implant diseases.


2021 ◽  
Vol 28 ◽  
pp. 100650
Author(s):  
Naiyan Lu ◽  
Zhe Chen ◽  
Wei Zhang ◽  
Guofeng Yang ◽  
Qingrun Liu ◽  
...  

2007 ◽  
Vol 342-343 ◽  
pp. 697-700
Author(s):  
Quan Yuan ◽  
Zhen Tan ◽  
Ping Gong ◽  
Rong Rong Nie ◽  
Xiao Yu Li ◽  
...  

Osseointegrated titanium implants have been widely used in clinics for replacement of missing teeth. However, sensory perception thresholds of implants were 10 to 100 times higher than those of natural teeth. The purpose of this study was to evaluate the effect of the ceramic coating generated by microarc oxidation (MAO) on sensory reconstruction around dental implants. The MAO coating was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and scanning probe microscope (SPM). Moreover, the chemical composition was analyzed with an energy dispersive spectroscope (EDS). Using smooth titanium discs as a control, Schwann cell responses to the coating were evaluated by SEM, MTT assay, total protein content and leakage of cytosolic lactate dehydrogenase (LDH) activity. In addition, the amount of brain-derived neurotrophic factor (BDNF) secreted by Schwann cells was measured by Enzyme-Linked Immunosorbent Assay (ELISA). It was observed that the porous coating had separated and homogeneous micropores in the diameter of 1-2 μm. The concentrations of Ca and P in the layer were 8.63% and 5.23% respectively. The cell morphology, proliferation and secretion of BDNF were unaffected. The results indicated that the MAO ceramic coating developed on the surface of pure titanium had good biocompatibility with Schwann cells for sensory reconstruction around dental implants.


2021 ◽  
Vol 22 (7) ◽  
pp. 3800
Author(s):  
Ingmar A. J. van Hengel ◽  
Melissa W. A. M. Tierolf ◽  
Lidy E. Fratila-Apachitei ◽  
Iulian Apachitei ◽  
Amir A. Zadpoor

Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.


2018 ◽  
Vol 73 (1) ◽  
pp. 59-68 ◽  
Author(s):  
A. G. Samokhin ◽  
Ju. N. Kozlova ◽  
D. V. Korneev ◽  
O. S. Taranov ◽  
E. A. Fedorov ◽  
...  

Background: The problem of bacterial colonization of implants used in medical practice continues to be relevant regardless of the material of the implant. Particular attention deserves polymeric implants, which are prepared ex tempore from polymethyl methacrylate, for example - duting orthopedic surgical interventions (so-called "bone cement"). The protection of such implants by antibiotic impregnation is subjected to multiple criticisms, therefore, as an alternative to antibiotics, lytic bacteriophages with a number of unique advantages can be used - however, no experimental studies have been published on the possibility of impregnating bacteriophages into polymethyl methacrylate and their antibacterial activity assessment under such conditions.Aims: to evaluate the possibility of physical placement of bacteriophages in polymethylmethacrylate and to characterize the lytic antibacterial effect of two different strains of bacteriophages when impregnated into polymer carrier ex tempore during the polymerization process in in vitro model.Materials and methods:  First stage - Atomic force microscopy (AFM) of polymethyl methacrylate samples for medical purposes was used to determine the presence and size of caverns in polymethyl methacrylate after completion of its polymerization at various reaction  temperatures (+6…+25°C and +18…+50°C).The second stage was performed in vitro and included an impregnation of two different bacteriophage strains (phage ph20 active against S. aureus and ph57 active against Ps. aeruginosa) into polymethyl methacrylate during the polymerization process, followed by determination of their antibacterial activity.Results: ACM showed the possibility of bacteriophages placement in the cavities of polymethyl methacrylate - the median of the section and the depth of cavities on the outer surface of the polymer sample polymerized at +18…+50°C were 100.0 and 40.0 nm, respectively, and on the surface of the transverse cleavage of the sample - 120.0 and 100.0 nm, respectively, which statistically did not differ from the geometric dimensions of the caverns of the sample polymerized at a temperature of +6…+25°C.The study of antibacterial activity showed that the ph20 bacteriophage impregnated in polymethyl methacrylate at +6…+25°C lost its effective titer within the first six days after the start of the experiment, while the phage ph57 retained an effective titer for at least 13 days.Conclusion: the study confirmed the possibility of bacteriophages impregnation into medical grade polymethyl methacrylate, maintaining the effective titer of the bacteriophage during phage emission into the external environment, which opens the way for the possible application of this method of bacteriophage delivery in clinical practice. It is also assumed that certain bacteriophages are susceptible to aggressive influences from the chemical components of "bone cement" and / or polymerization reaction products, which requires strict selection of bacteriophage strains that could be suitable for this method of delivery.


2020 ◽  
Vol 15 (6) ◽  
pp. 065003
Author(s):  
Xuan Zhou ◽  
Xin Zhou ◽  
Rongshuai Yan ◽  
Xiaohua Shi ◽  
Yichen Du ◽  
...  

2005 ◽  
Vol 14 (12) ◽  
pp. 2598-2601 ◽  
Author(s):  
Wang Jian-Bo ◽  
Wu Han-Hua ◽  
Li Quan-Jun ◽  
Li Zhe-Kui ◽  
Gu Guang-Rui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document