scholarly journals Oligomannose-Coated Liposome as a Novel Adjuvant for the Induction of Cellular Immune Responses to Control Disease Status

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Naoya Kojima ◽  
Mariko Ishii ◽  
Yoko Kawauchi ◽  
Hideaki Takagi

Professional phagocytic cells, such as dendritic cells, are mainly responsible for phagocytosis, antigen presentation, and cytokine secretion, which induce subsequent activation of T cell-mediated immunity. Thus, strategies that deliver antigens and stimulatory signals to the cells have significant implications for vaccine design. In this paper, we summarize the potential for liposomes coated with the neoglycolipids containing oligomannose residues (OMLs) as a novel adjuvant for induction of Th1 immune responses and CTLs specific for the encased antigen. OMLs preferentially take up peripheral phagocytic cells. In response to OML uptake, the cells secrete IL-12 selectively, enhance the expression of costimulatory molecules, and migrate into lymphoid tissues from peripheral tissues. OMLs also have the ability to deliver encapsulated protein antigens to the MHC class I and class II pathways to generate antigen-specific CTLs and Th1 cells, respectively, and lipid antigen to CD1d to activate NKT cells. Since administration of OML-based vaccines can eliminate an established tumor, inhibit elevation of the serum IgE level, and prevent progression of protozoan infections in several murine, human, and bovine models, OML-based vaccines have revealed their potential for clinical use in vaccination for a variety of diseases in which CTLs and/or Th1 cells act as effector cells.

1996 ◽  
Vol 9 (3) ◽  
pp. 349-360 ◽  
Author(s):  
H S Lillehoj ◽  
J M Trout

Coccidiosis, an intestinal infection caused by intracellular protozoan parasites belonging to several different species of Eimeria, seriously impairs the growth and feed utilization of livestock and poultry. Host immune responses to coccidial infection are complex. Animals infected with Eimeria spp. produce parasite-specific antibodies in both the circulation and mucosal secretions. However, it appears that antibody-mediated responses play a minor role in protection against coccidiosis. Furthermore, there is increasing evidence that cell-mediated immunity plays a major role in resistance to infection. T lymphocytes appear to respond to coccidial infection through both cytokine production and a direct cytotoxic attack on infected cells. The exact mechanisms by which T cells eliminate the parasites, however, remain unclear. Although limited information is available on the intestinal immune system of chickens, gut lymphoid tissues have evolved specialized features that reflect their role as the first line of defense at mucosal surfaces, including both immunoregulatory cells and effector cells. This review summarizes our current understanding of the avian intestinal immune system and mucosal immune responses to Eimeria spp., providing an overview of the complex cellular and molecular events involved in intestinal immune responses to enteric pathogens.


2005 ◽  
Vol 73 (10) ◽  
pp. 6711-6720 ◽  
Author(s):  
S. de Vallière ◽  
G. Abate ◽  
A. Blazevic ◽  
R. M. Heuertz ◽  
D. F. Hoft

ABSTRACT We investigated the ability of human antibodies induced by Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination to protect against mycobacterial infections. Serum samples containing mycobacterium-specific antibodies were obtained from volunteers who had received two intradermal BCG vaccinations 6 months apart. Significant increases in lipoarabinomannan (LAM)-specific immunoglobulin G (IgG) were detected after both the primary and booster vaccinations. Effects of mycobacterium-specific antibodies on surface binding and internalization of BCG by neutrophils and monocytes/macrophages were studied, using green fluorescent protein (gfp)-expressing BCG. Surface-bound gfp-expressing BCG were distinguished from intracellular BCG by surface labeling with LAM-specific monoclonal antibody. Internalization of BCG by phagocytic cells was shown to be significantly enhanced in postvaccination serum samples. Furthermore, the inhibitory effects of neutrophils and monocytes/macrophages on mycobacterial growth were significantly enhanced by BCG-induced antibodies. The growth-inhibiting effects of postvaccination sera were reversed by preabsorption of IgG with Protein G. Finally, the helper effects of antimycobacterial antibodies for the induction of cell-mediated immune responses were investigated. BCG-induced antibodies significantly enhanced proliferation and gamma interferon production in mycobacterium-specific CD4+ and CD8+ T cells, as well as the proportion of proliferating and degranulating CD8+ T cells. We conclude that mycobacterium-specific antibodies are capable of enhancing both innate and cell-mediated immune responses to mycobacteria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1819-1819 ◽  
Author(s):  
Je-Jung Lee ◽  
Tan-Huy Chu ◽  
Manh-Cuong Vo ◽  
Hye-Sung Park ◽  
Thangaraj Jaya Lakshmi ◽  
...  

Multiple myeloma (MM) is the second-most-common hematologic malignancy, and develops from clonal malignant plasma cells within bone marrow. Despite tremendous improvements in therapeutic strategies (e.g. stem cell transplantation, immune-modulatory drugs (IMiDs), proteasome inhibitors, and, more recently, immunotherapy), which have led to improved responses to treatment and overall survival, most patients eventually relapse. We have previously shown that the immunization with tumor antigen-loaded dendritic cells (DCs) and pomalidomide/dexamethasone synergistically potentiates the enhancing the antitumor immunity in a myeloma mouse model. In the present study, we investigated whether a DC-based vaccine combined with pomalidomide and PD-L1 blockade has a synergistic effect in a murine MM model. MOPC-315 cell lines were injected subcutaneously to establish MM-bearing mice. Four test groups were used to mimic the clinical protocol: (1) PBS control, (2) DCs + pomalidomide/dexamethasone, (3) pomalidomide/dexamethasone + PD-L1 blockade, and (4) DCs + pomalidomide/dexamethasone + PD-L1 blockade. After treatment, preclinical response and in vitro immunological responses were evaluated. The study was designed to closely mimic the clinical MM treatment protocol and clearly demonstrated that combination treatment with DCs + pomalidomide with dexamethasone + PD-L1 blockade more strongly inhibited MM tumor growth. Consequently, the mice treated with DCs + pomalidomide with dexamethasone + PD-L1 blockade displayed markedly induced tumor regression and significantly prolonged survival, as well as very strong anti-myeloma CTL responses and increased numbers of effector cells (such as CD4+ T cells, CD8+ T cells, memory T cells, NK cells and M1 macrophages) associated with antitumor effects. This treatment also effectively decreased the proportions of suppressor cells, including MDSCs, Tregs and M2 macrophages, in the spleen and tumor microenvironment of treated mice. Tregs, MDSCs and M2 macrophages play crucial roles in immunosuppression and tolerance, which are mediated by tumor-secreted cytokines. The inhibition of Tregs, MDSC and M2 macrophage accumulation may enhance systemic cell-mediated immunity through the activation of DCs or CTLs. Importantly, treatment with pomalidomide with dexamethasone + PD-L1 blockade led to decreased expression of PD-L1 and CTLA-4 in treated mice, which further induced effector cell infiltration of the tumor microenvironment. Moreover, DCs + pomalidomide with dexamethasone + PD-L1 blockade induced the activation of cell-mediated immunity by increasing Th1-specific immune responses, as evidenced by the increased production of IFN-γ and a decrease in the regulatory-specific immune response, as evidenced by the decreased production of TGF-β, IL-10 and VEGF in the spleen and tumor microenvironment. These findings show that inducing the systemic immune response represent a means of treating myeloma. Immunotherapy clearly represents a revolution in cancer care, and promising responses have been shown to various treatments, particularly immune checkpoint inhibitors, IMiDs, DCs and CAR T cells. However, not all patients are responsive to current immunotherapies, and among those patients who do respond, the effects are not always long-lasting. Thus, combination approaches are a cornerstone of cancer therapy for improving patient outcomes in MM. This study demonstrated that the combination of DC vaccination + pomalidomide with dexamethasone + PD-L1 blockade synergistically enhances myeloma immune responses to inhibit tumor growth, restores and enhances host immune effector cells, and reduces the generation of immune suppressor cells in MM. This study provides a framework for developing and understanding the role of immunotherapeutic modalities employing DCs, pomalidomide and PD-L1 blockade to inhibit tumor growth and restore immune function in myeloma-bearing mice. Figure Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1900-1910 ◽  
Author(s):  
Paul Drillenburg ◽  
Steven T. Pals

Abstract Regulated lymphocyte trafficking is essential for the control and integration of systemic immune responses. This homing process disperses the immunologic repertoire, guides lymphocyte subsets to the specialized microenvironments that control their differentiation and survival, and targets immune effector cells to sites of antigenic insult. This review discusses data indicating that the adhesion receptors regulating the trafficking of normal lymphocytes are also expressed and functionally active in their malignant counterparts, the non-Hodgkin lymphomas. These “homing receptors” appear to mediate the highly tissue-specific dissemination of specific lymphoma subtypes, such as lymphomas of the mucosa-associated lymphoid tissues and lymphomas of the skin. Furthermore, as a result of their capability to enhance lymphoma dissemination and to transduce signals into the cell, promoting cell growth and survival, adhesion receptors may contribute to lymphoma aggressiveness. Taken together, the data offer a framework for understanding the dissemination routes of non-Hodgkin lymphomas and suggest that adhesion receptors, specifically those of the CD44 family, may present useful tools to predict prognosis in patients with lymphomas.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng-Tao Jiang ◽  
Kai-Ge Chen ◽  
An Liu ◽  
Hua Huang ◽  
Ya-Nan Fan ◽  
...  

AbstractModulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the co-engagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an ‘adaptor’ while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (αFc) onto the nanoparticle surface (αFc-NP), and confirm that αFc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.


1999 ◽  
Vol 147 (3) ◽  
pp. 599-610 ◽  
Author(s):  
Clotilde Théry ◽  
Armelle Regnault ◽  
Jérôme Garin ◽  
Joseph Wolfers ◽  
Laurence Zitvogel ◽  
...  

Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594–600). To unravel the molecular basis of exosome-induced immune stimulation, we now analyze the regulation of their production during DC maturation and characterize extensively their protein composition by peptide mass mapping. Exosomes contain several cytosolic proteins (including annexin II, heat shock cognate protein hsc73, and heteromeric G protein Gi2α), as well as different integral or peripherally associated membrane proteins (major histocompatiblity complex class II, Mac-1 integrin, CD9, milk fat globule-EGF-factor VIII [MFG-E8]). MFG-E8, the major exosomal component, binds integrins expressed by DCs and macrophages, suggesting that it may be involved in exosome targeting to these professional antigen-presenting cells. Another exosome component is hsc73, a cytosolic heat shock protein (hsp) also present in DC endocytic compartments. hsc73 was shown to induce antitumor immune responses in vivo, and therefore could be involved in the exosome's potent antitumor effects. Finally, exosome production is downregulated upon DC maturation, indicating that in vivo, exosomes are produced by immature DCs in peripheral tissues. Thus, DC-derived exosomes accumulate a defined subset of cellular proteins reflecting their endosomal biogenesis and accounting for their biological function.


2010 ◽  
Vol 113 (2) ◽  
pp. 280-285 ◽  
Author(s):  
James Miller ◽  
Guenter Eisele ◽  
Ghazaleh Tabatabai ◽  
Steffen Aulwurm ◽  
Gabriele von Kürthy ◽  
...  

Object Given the overall poor outcome with current treatment strategies in malignant gliomas, immunotherapy has been considered a promising experimental approach to glioblastoma for more than 2 decades. A cell surface molecule, CD70, may induce potent antitumor immune responses via activation of the costimulatory receptor CD27 expressed on immune effector cells. There is evidence that a soluble form of CD70 (sCD70) may exhibit biological activity, too. A soluble costimulatory ligand is attractive because it may facilitate immune activation and may achieve a superior tissue distribution. Methods To test the antiglioma effect of sCD70, the authors genetically modified SMA-560 mouse glioma cells to secrete the extracellular domain of CD70. They assessed the immunogenicity of the transfected cells in cocultures with immune effector cells by the determination of immune cell proliferation and the release of interferon-γ. Syngeneic VM/Dk mice were implanted orthotopically with control or sCD70-releasing glioma cells to determine a survival benefit mediated by sCD70. Depletion studies were performed to identify the cellular mediators of prolonged survival of sCD70-releasing glioma-bearing mice. Results The authors found that ectopic expression of sCD70 enhanced the proliferation and interferon-γ release of syngeneic splenocytes in vitro. More importantly, sCD70 prolonged the survival of syngeneic VM/Dk mice bearing intracranial SMA-560 gliomas. The survival rate at 60 days increased from 5 to 45%. Antibody-mediated depletion of CD8-positive T cells abrogates the survival advantage conferred by sCD70. Conclusions These data suggest that sCD70 is a potent stimulator of antiglioma immune responses that depend critically on CD8-positive T cells. Soluble CD70 could be a powerful adjuvant for future immunotherapy trials for glioblastoma.


2003 ◽  
Vol 197 (10) ◽  
pp. 1255-1267 ◽  
Author(s):  
Baohui Xu ◽  
Norbert Wagner ◽  
Linh Nguyen Pham ◽  
Vincent Magno ◽  
Zhongyan Shan ◽  
...  

Bronchus-associated lymphoid tissue (BALT) participates in airway immune responses. However, little is known about the lymphocyte–endothelial adhesion cascades that recruit lymphocytes from blood into BALT. We show that high endothelial venules (HEVs) in BALT express substantial levels of VCAM-1, in marked contrast to HEVs in other secondary lymphoid tissues. BALT HEVs also express the L-selectin ligand PNAd. Anti–L-selectin, anti-PNAd, and anti–LFA-1 mAbs almost completely block the homing of B and T lymphocytes into BALT, whereas anti–α4 integrin and anti–VCAM-1 mAbs inhibit homing by nearly 40%. α4β7 integrin and MAdCAM-1 are not involved. Importantly, we found that mAbs against α4 integrin and VCAM-1 significantly block the migration of total T cells (80% memory phenotype) but not naive T and B cells to BALT. These results suggest that an adhesion cascade, which includes L-selectin/PNAd, α4β1 integrin/VCAM-1, and LFA-1, targets specific lymphocyte subsets to BALT. This high level of involvement of α4β1 integrin/VCAM-1 is unique among secondary lymphoid tissues, and may help unify lymphocyte migration pathways and immune responses in BALT and other bronchopulmonary tissues.


Author(s):  
Yang-Ju Son ◽  
Ji Min Shin ◽  
In Jin Ha ◽  
Saruul Erdenebileg ◽  
Da Seul Jung ◽  
...  

Artemisia gmelinii Web. ex Stechm. (AG), a popular medicinal herb in Asia, has been used as a common food ingredient in Korea and is traditionally known for its anti-inflammatory properties. Therefore, in this study, we aimed to investigate whether AG relieves IBD, a classic chronic inflammatory disease of the gastrointestinal tract. We identified 35 chemical compounds in AG ethanol extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. In mice with DSS-induced IBD, AG administration attenuated the disease activity index and the serum and colonic levels of inflammatory cytokines and chemokines. AG treatment decreased nuclear factor-[Formula: see text]B (NF-[Formula: see text]B) signaling, a key mediator of inflammation, in the mouse colons. Additionally, AG extract enhanced immune responses in lymphoid tissues such as spleen and Peyer’s patches. Thus, AG consumption potently ameliorated IBD symptoms and improved immune signaling in lymphoid tissues.


2021 ◽  
Author(s):  
Girish Radhakrishnan ◽  
Varadendra Mazumdar ◽  
Kiranmai Joshi ◽  
Binita Roy Nandi ◽  
Swapna Namani ◽  
...  

Brucella species are intracellular bacterial pathogens, causing the world-wide zoonotic disease, brucellosis.  Brucella invade professional and non-professional phagocytic cells, followed by resisting intracellular killing and establishing a replication permissive niche. Brucella also modulate the innate and adaptive immune responses of the host for their chronic persistence. The complex intracellular cycle of Brucella majorly depends on multiple host factors but limited information is available on host and bacterial proteins that play essential role in the invasion, intracellular replication and modulation of host immune responses. By employing an siRNA screening, we identified a role for the host protein, FBXO22 in Brucella -macrophage interaction. FBXO22 is the key element in the SCF E3 ubiquitination complex where it determines the substrate specificity for ubiquitination and degradation of various host proteins.  Downregulation of FBXO22 by siRNA or CRISPR-Cas9 system, resulted diminished uptake of Brucella into macrophages, which was dependent on NF-κB-mediated regulation of phagocytic receptors. FBXO22 expression was upregulated in Brucella -infected macrophages that resulted induction of phagocytic receptors and enhanced production of pro-inflammatory cytokines through NF-κB. Furthermore, we found that FBXO22 recruits the effector proteins of Brucella , including the anti-inflammatory proteins, TcpB and OMP25 for degradation through the SCF complex. We did not observe any role for another F-box containing protein of SCF complex, β-TrCP in Brucella -macrophage interaction. Our findings unravel novel functions of FBXO22 in host-pathogen interaction and its contribution to pathogenesis of infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document