scholarly journals Cellular and Biochemical Mechanisms of the Retroviral Restriction Factor SAMHD1

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Li Wu

Replication of HIV-1 and other retroviruses is dependent on numerous host proteins in the cells. Some of the host proteins, however, function as restriction factors to block retroviral infection of target cells. The host protein SAMHD1 has been identified as the first mammalian deoxynucleoside triphosphate triphosphohydrolase (dNTPase), which blocks the infection of HIV-1 and other retroviruses in non-cycling immune cells. SAMHD1 protein is highly expressed in human myeloid-lineage cells and CD4+ T-lymphocytes, but its retroviral restriction function is only observed in noncycling cells. Recent studies have revealed biochemical mechanisms of SAMHD1-mediated retroviral restriction. In this review, the latest progress on SAMHD1 research is summarized and the mechanisms by which SAMHD1 mediates retroviral restriction are analyzed. Although the physiological function of SAMHD1 is largely unknown, this review provides perspectives about the role of endogenous SAMHD1 protein in maintaining normal cellular function, such as nucleic acid metabolism and the proliferation of cells.

2019 ◽  
Author(s):  
Molly Ohainle ◽  
Kyusik Kim ◽  
Sevnur Keceli ◽  
Abby Felton ◽  
Ed Campbell ◽  
...  

AbstractThe HIV-1 capsid protein makes up the core of the virion and plays a critical role in early steps of HIV replication. Due to its exposure in the cytoplasm after entry, HIV capsid is a target for host cell factors that act directly to block infection such as TRIM5 and MxB. Several host proteins also play a role in facilitating infection, including in the protection of HIV-1 capsid from recognition by host cell restriction factors. Through an unbiased screening approach, called HIV-CRISPR, we show that the Cyclophilin A-binding deficient P90A HIV-1 capsid mutant becomes highly-sensitized to TRIM5alpha restriction in IFN-treated cells. Further, the CPSF6-binding deficient, N74D HIV-1 capsid mutant is sensitive to restriction mediated by human TRIM34, a close paralog of the well-characterized HIV restriction factor TRIM5. This restriction occurs at the step of reverse transcription, is independent of interferon stimulation and limits HIV-1 infection in key target cells of HIV infection including CD4+ T cells and monocyte-derived dendritic cells. TRIM34 restriction requires TRIM5alpha as knockout or knockdown of TRIM5alpha results in a loss of antiviral activity. TRIM34 can also restrict some SIV capsids. Through immunofluorescence studies, we show that TRIM34 and TRIM5alpha colocalize to cytoplasmic bodies and are more frequently observed to be associated with infecting N74D capsids than with WT capsids. Our results identify TRIM34 as an HIV-1 CA-targeting restriction factor and highlight the potential role for heteromultimeric TRIM interactions in contributing restriction of HIV-1 infection in human cells.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Eric Rossi ◽  
Megan E. Meuser ◽  
Camille J. Cunanan ◽  
Simon Cocklin

The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Romain Appourchaux ◽  
Mathilde Delpeuch ◽  
Li Zhong ◽  
Julien Burlaud-Gaillard ◽  
Kevin Tartour ◽  
...  

ABSTRACT The interferon-induced transmembrane proteins (IFITMs) are a family of highly related antiviral factors that affect numerous viruses at two steps: in target cells by sequestering incoming viruses in endosomes and in producing cells by leading to the production of virions that package IFITMs and exhibit decreased infectivity. While most studies have focused on the former, little is known about the regulation of the negative imprinting of virion particle infectivity by IFITMs and about its relationship with target cell protection. Using a panel of IFITM3 mutants against HIV-1, we have explored these issues as well as others related to the biology of IFITM3, in particular virion packaging, stability, the relation to CD63/multivesicular bodies (MVBs), the modulation of cholesterol levels, and the relationship between negative imprinting of virions and target cell protection. The results that we have obtained exclude a role for cholesterol and indicate that CD63 accumulation does not directly relate to an antiviral behavior. We have defined regions that modulate the two antiviral properties of IFITM3 as well as novel domains that modulate protein stability and that, in so doing, influence the extent of its packaging into virions. The results that we have obtained, however, indicate that, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for negative imprinting. Finally, while most mutations concomitantly affect target cell protection and negative imprinting, a region in the C-terminal domain (CTD) exhibits a differential behavior, potentially highlighting the regulatory role that this domain may play in the two antiviral activities of IFITM3. IMPORTANCE IFITM proteins have been associated with the sequestration of incoming virions in endosomes (target cell protection) and with the production of virion particles that incorporate IFITMs and exhibit decreased infectivity (negative imprinting of virion infectivity). How the latter is regulated and whether these two antiviral properties are related remain unknown. By examining the behavior of a large panel of IFITM3 mutants against HIV-1, we determined that IFITM3 mutants are essentially packaged into virions proportionally to their intracellular levels of expression. However, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for the antiviral effects. Most mutations were found to concomitantly affect both antiviral properties of IFITM3, but one CTD mutant exhibited a divergent behavior, possibly highlighting a novel regulatory role for this domain. These findings thus advance our comprehension of how this class of broad antiviral restriction factors acts.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1005 ◽  
Author(s):  
Jennifer L. Elliott ◽  
Sebla B. Kutluay

The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.


2017 ◽  
Vol 91 (7) ◽  
Author(s):  
Yimeng Wang ◽  
Qinghua Pan ◽  
Shilei Ding ◽  
Zhen Wang ◽  
Jingyou Yu ◽  
...  

ABSTRACT Interferon-inducible transmembrane proteins (IFITMs) inhibit a broad spectrum of viruses, including HIV-1. IFITM proteins deter HIV-1 entry when expressed in target cells and also impair HIV-1 infectivity when expressed in virus producer cells. However, little is known about how viruses resist IFITM inhibition. In this study, we have investigated the susceptibilities of different primary isolates of HIV-1 to the inhibition of viral infectivity by IFITMs. Our results demonstrate that the infectivity of different HIV-1 primary isolates, including transmitted founder viruses, is diminished by IFITM3 to various levels, with strain AD8-1 exhibiting strong resistance. Further mutagenesis studies revealed that HIV-1 Env, and the V3 loop sequence in particular, determines the extent of inhibition of viral infectivity by IFITM3. IFITM3-sensitive Env proteins are also more susceptible to neutralization by soluble CD4 or the 17b antibody than are IFITM3-resistant Env proteins. Together, data from our study suggest that the propensity of HIV-1 Env to sample CD4-bound-like conformations modulates viral sensitivity to IFITM3 inhibition. IMPORTANCE Results of our study have revealed the key features of the HIV-1 envelope protein that are associated with viral resistance to the IFITM3 protein. IFITM proteins are important effectors in interferon-mediated antiviral defense. A variety of viruses are inhibited by IFITMs at the virus entry step. Although it is known that envelope proteins of several different viruses resist IFITM inhibition, the detailed mechanisms are not fully understood. Taking advantage of the fact that envelope proteins of different HIV-1 strains exhibit different degrees of resistance to IFITM3 and that these HIV-1 envelope proteins share the same domain structure and similar sequences, we performed mutagenesis studies and determined the key role of the V3 loop in this viral resistance phenotype. We were also able to associate viral resistance to IFITM3 inhibition with the susceptibility of HIV-1 to inhibition by soluble CD4 and the 17b antibody that recognizes CD4-binding-induced epitopes.


2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Bin Xu ◽  
Qinghua Pan ◽  
Chen Liang

ABSTRACTType I interferon inhibits viruses through inducing the expression of antiviral proteins, including the myxovirus resistance (Mx) proteins. Compared to the human MxA protein, which inhibits a wide range of viruses, the MxB protein has been reported to specifically inhibit primate lentiviruses, including HIV-1, and herpesviruses. Further, the role of endogenous MxB in alpha interferon-mediated inhibition of HIV-1 infection was questioned by a recent study showing that MxB knockout did not increase the level of infection by HIV-1 which carried the G protein of vesicular stomatitis virus (VSV), allowing infection of CD4-negative HT1080 cells. In order to further examine the anti-HIV-1 activity of endogenous MxB, we have used CRISPR/Cas9 to deplete MxB in different cell lines and observed a substantial restoration of HIV-1 infection in the presence of alpha interferon treatment. However, this rescue effect of MxB knockout became much less pronounced when infection was performed with HIV-1 carrying the VSV G protein. Interestingly, a CRISPR/Cas9 knockout screen of alpha interferon-stimulated genes in U87-MG cells revealed that the genes for interferon-induced transmembrane protein 2 (IFITM2) and IFITM3 inhibited VSV G-pseudotyped HIV-1 much more strongly than the rest of the genes tested, including the gene for MxB. Therefore, our results demonstrate the importance of MxB in alpha interferon-mediated inhibition of HIV-1 infection, which, however, can be underestimated if infection is performed with VSV G protein-pseudotyped HIV-1, due to the high sensitivity of VSV G-mediated infection to inhibition by IFITM proteins.IMPORTANCEThe results of this study reconcile the controversial reports regarding the anti-HIV-1 function of alpha interferon-induced MxB protein. In addition to the different cell types that may have contributed to the different observations, our data also suggest that VSV G protein-pseudotyped HIV-1 is much less inhibited by alpha interferon-induced MxB than HIV-1 itself is. Our results clearly demonstrate an important contribution of MxB to alpha interferon-mediated inhibition of HIV-1 in CD4+T cells, which calls for using HIV-1 target cells and wild-type virus to test the relevance of the anti-HIV-1 activity of endogenous MxB and other restriction factors.


2020 ◽  
Author(s):  
Peter W. Ramirez ◽  
Aaron A. Angerstein ◽  
Marissa Suarez ◽  
Thomas Vollbrecht ◽  
Jared Wallace ◽  
...  

AbstractThe lentiviral nef gene encodes several discrete activities aimed at co-opting or antagonizing cellular proteins and pathways to defeat host defenses and maintain persistent infection. Primary functions of Nef include downregulation of CD4 and MHC class-I from the cell surface, disruption or mimicry of T-cell receptor signaling, and enhancement of viral infectivity by counteraction of the host antiretroviral proteins SERINC3 and SERINC5. In the absence of Nef, SERINC3 and SERINC5 incorporate into virions and inhibit viral fusion with target cells, decreasing infectivity. However, whether Nef’s counteraction of SERINC3 and SERINC5 is the cause of its positive influence on viral growth-rate in CD4-positive T cells is unclear. Here, we utilized CRISPR/Cas9 to knockout SERINC3 and SERINC5 in a leukemic CD4-positive T cell line (CEM) that displays robust nef-related infectivity and growth-rate phenotypes. As previously reported, viral replication was severely attenuated in CEM cells infected with HIV-1 lacking Nef (HIV-1ΔNef). This attenuated growth-rate phenotype was observed regardless of whether or not the coding regions of the serinc3 and serinc5 genes were intact. Moreover, knockout of serinc3 and serinc5 failed to restore the infectivity of HIV-1ΔNef virions produced from infected CEM cells in single-cycle replication experiments using CD4-positive HeLa cells as targets. Taken together, our results corroborate a recent study using another T-lymphoid cell line (MOLT-3) and suggest that Nef modulates a still unidentified host protein(s) to enhance viral growth rate and infectivity in CD4-positive T cells.ImportanceHIV-1 Nef is a major pathogenicity factor in vivo. A well-described activity of Nef is the enhancement of virion-infectivity and viral propagation in vitro. The infectivity-effect has been attributed to Nef’s ability to prevent the cellular, antiretroviral proteins SERINC3 and SERINC5 from incorporating into viral particles. While the activity of the SERINCs as inhibitors of retroviral infectivity has been well-documented, the role these proteins play in controlling HIV-1 replication is less clear. We report here that genetic disruption of SERINC3 and SERINC5 rescues neither viral replication-rate nor the infectivity of cell-free virions produced from CD4-positive T cells of the CEM lymphoblastoid line infected with viruses lacking Nef. This indicates that failure to modulate SERINC3 and SERINC5 is not the cause of the virologic attenuation of nef-negative HIV-1 observed using this system.


2019 ◽  
Vol 93 (7) ◽  
Author(s):  
Wuxun Lu ◽  
Shuliang Chen ◽  
Jingyou Yu ◽  
Ryan Behrens ◽  
Joshua Wiggins ◽  
...  

ABSTRACT HIV-1 enters cells through binding between viral envelope glycoprotein (Env) and cellular receptors to initiate virus and cell fusion. HIV-1 Env precursor (gp160) is cleaved into two units noncovalently bound to form a trimer on virions, including a surface unit (gp120) and a transmembrane unit (gp41) responsible for virus binding and membrane fusion, respectively. The polar region (PR) at the N terminus of gp41 comprises 17 residues, including 7 polar amino acids. Previous studies suggested that the PR contributes to HIV-1 membrane fusion and infectivity; however, the precise role of the PR in Env-mediated viral entry and the underlying mechanisms remain unknown. Here, we show that the PR is critical for HIV-1 fusion and infectivity by stabilizing Env trimers. Through analyzing the PR sequences of 57,645 HIV-1 isolates, we performed targeted mutagenesis and functional studies of three highly conserved polar residues in the PR (S532P, T534A, and T536A) which have not been characterized previously. We found that single or combined mutations of these three residues abolished or significantly decreased HIV-1 infectivity without affecting viral production. These PR mutations abolished or significantly reduced HIV-1 fusion with target cells and also Env-mediated cell-cell fusion. Three PR mutations containing S532P substantially reduced gp120 and gp41 association, Env trimer stability, and increased gp120 shedding. Furthermore, S532A mutation significantly reduced HIV-1 infectivity and fusogenicity but not Env expression and cleavage. Our findings suggest that the PR of gp41, particularly the key residue S532, is structurally essential for maintaining HIV-1 Env trimer, viral fusogenicity, and infectivity. IMPORTANCE Although extensive studies of the transmembrane unit (gp41) of HIV-1 Env have led to a fusion inhibitor clinically used to block viral entry, the functions of different domains of gp41 in HIV-1 fusion and infectivity are not fully elucidated. The polar region (PR) of gp41 has been proposed to participate in HIV-1 membrane fusion in biochemical analyses, but its role in viral entry and infectivity remain unclear. In our effort to characterize three nucleotide mutations of an HIV-1 RNA element that partially overlaps the PR coding sequence, we identified a novel function of the PR that determines viral fusion and infectivity. We further demonstrated the structural and functional impact of six PR mutations on HIV-1 Env stability, viral fusion, and infectivity. Our findings reveal the previously unappreciated function of the PR and the underlying mechanisms, highlighting the important role of the PR in regulating HIV-1 fusion and infectivity.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 390 ◽  
Author(s):  
Anastasia Zotova ◽  
Anastasia Atemasova ◽  
Alexey Pichugin ◽  
Alexander Filatov ◽  
Dmitriy Mazurov

The role of accessory proteins during cell-to-cell transmission of HIV-1 has not been explicitly defined. In part, this is related to difficulties in measuring virus replication in cell cocultures with high accuracy, as cells coexist at different stages of infection and separation of effector cells from target cells is complicated. In this study, we used replication-dependent reporter vectors to determine requirements for Vif, Vpu, Vpr, or Nef during one cycle of HIV-1 cell coculture and cell-free infection in lymphoid and nonlymphoid cells. Comparative analysis of HIV-1 replication in two cell systems showed that, irrespective of transmission way, accessory proteins were generally less required for virus replication in 293T/CD4/X4 cells than in Jurkat-to-Raji/CD4 cell cocultures. This is consistent with a well-established fact that lymphoid cells express a broad spectrum of restriction factors, while nonlymphoid cells are rather limited in this regard. Remarkably, Vpu deletion reduced the level of cell-free infection, but enhanced the level of cell coculture infection and increased the fraction of multiply infected cells. Nef deficiency did not influence or moderately reduced HIV-1 infection in nonlymphoid and lymphoid cell cocultures, respectively, but strongly affected cell-free infection. Knockout of BST2—a Vpu antagonizing restriction factor—in Jurkat producer cells abolished the enhanced replication of HIV-1 ΔVpu in cell coculture and prevented the formation of viral clusters on cell surface. Thus, BST2-tethered viral particles mediated cell coculture infection more efficiently and at a higher level of multiplicity than diffusely distributed virions. In conclusion, our results demonstrate that the mode of transmission may determine the degree of accessory protein requirements during HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document