scholarly journals Calculation Formula Optimization and Effect of Ring Clearance on Axial Force of Multistage Pump

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Chuan Wang ◽  
Weidong Shi ◽  
Li Zhang

Since overlarge axial force can damage the pump, accurate calculation formula of axial force on pump is very significant. The traditional formula is based on the assumption that the leakage amount of the pump is zero and the angular speed of fluid in the pump chamber rotates at half the impeller rotation’s angular speed. In order to propose an accurate calculation formula, the whole flow fields of multistage pumps with three different ring clearances were calculated by using Computational Fluid Dynamics (CFD). The results indicate that the axial force on first-stage impeller is larger than that on the second. Along with the change of ring clearance, the static pressure distribution on the shroud of impeller changes at the same time, which leads to the value change of axial force. Meanwhile, angular speed of the fluid in the pump chamber is changing. Therefore, this research works out the reason why the error of traditional axial force calculation is large when the amount of leakage is relatively high. At last, an accurate calculation formula of axial force on pump is obtained through the verification of numerical simulation and experiment.

2011 ◽  
Vol 90-93 ◽  
pp. 1761-1767
Author(s):  
Xiao Hua Xi ◽  
Shuan Cheng Gu

When bolt is damaged, character of stress is different from character of shear stress integrated bolt. Firstly, Based on the displacement formula of the tunnel surrounding rock,the shear stress and axial force calculation formula of integrated bolt are educed. Subsequence, based on the BOUSSINESG formula of displacement, models on fully grouted bolt shear stress and axial force of uniform rock are educed under pullout load. Consequently, the author deduces shear stress model of bolt damage (completely void of bolt and grouting), combining modes on shear stress and axial force of integrated bolt and shear stress model of bolt under pullout load..


1980 ◽  
Vol 87 (2) ◽  
pp. 357-376 ◽  
Author(s):  
D. M. Haughton ◽  
R. W. Ogden

SummaryBifurcation from a finitely deformed circular cylindrical configuration of a rotating circular cylindrical elastic membrane is examined. It is found (for a physically realistic choice of elastic strain-energy function) that the angular speed attains a maximum followed by a minimum relative to the increasing radius of the cylinder for either a fixed axial extension or fixed axial force.At fixed axial extension (a) a prismatic mode of bifurcation (in which the cross-section of the cylinder becomes uniformly non-circular) may occur at a maximum of the angular speed provided the end conditions on the cylinder allow this; (b) axisyim-metric modes may occur before, at or after the angular speed maximum depending on the length of the cylinder and the magnitude of the axial extension; (c) an asymmetric or ‘wobble’ mode is always possible before either (a) or (b) as the angular speed increases from zero for any length of cylinder or axial extension. Moreover, ‘wobble’ occurs at lower angular speeds for longer cylinders.At fixed axial force the results are similar to (a), (b) and (c) except that an axisym-metric mode necessarily occurs between the turning points of the angular speed.


2021 ◽  
Author(s):  
Teymour Javaherchi ◽  
Susheel Brahmeshwarkar ◽  
Raja Faruq ◽  
Chinmay Deshpande

Abstract This work will demonstrate how the Energy Recovery Inc. (ERI) engineering team improved the efficiency of a multistage pump by about 10% at the first stage, which translated into a 3% increase in the overall multistage pump efficiency; according to a set of engineering calculations and review of the archived in-house test data for the legacy multistage pumps, it was hypothesized that the performance pain-point of the pump was inefficient performance of the first stage, due to the formation of a strong pre-swirl right before its inlet. The validity of this hypothesis then was confirmed via RANS CFD simulations of the flow field inside the inlet suction housing and pump impeller. Same CFD methodology was used to evaluate multiple engineering solutions to reduce the strength of the inflow pre-swirl by modifying the inlet suction housing geometry. The obtained RANS CFD solutions guided the engineering team towards the most promising hardware modification proposal. The proposed geometrical modification of the inlet suction housing was implemented and tested on different multistage pumps. All of the test results validated the obtained RANS CFD numerical solution. The state of the art in this successful performance improvement process was first the on-point hypothesis development based on fundamentals of engineering and archived test data. Second, the proper RANS CFD methodology development to model/confirm the initial hypothesis and vet all possible engineering solutions to maximize the multistage pump efficiently and accurately. This can be a great example for various relevant turbomachinery industrial applications.


2021 ◽  
Author(s):  
Darren Jia

Diabolo is a popular game in which the object can be spun at up to speeds of 5000 rpm. This high spin velocity gives the diabolo the necessary angular momentum to remain stable. The shape of the diabolo generates an interesting air flow pattern. The viscous air applies a resistive torque on the fast spinning diabolo. Through computational fluid dynamics (CFD) simulations it's shown that the resistive torque has an interesting dependence on the angular speed of the diabolo. Further, the geometric shape of the diabolo affects the dependence of torque on angular speed.


Author(s):  
Zhang Lisheng ◽  
Jiang Jin ◽  
Xiao Zhihuai ◽  
Li Yanhui

In this paper numerical simulations were conducted to analyze the effects of design parameters and distribution of balancing-hole on the axial-force of a partial emission pump. The studied pump is a single stage pump with a Barske style impeller. Based on the original impeller, we designed 7 pumps with different balancing-hole diameters and the partial emission pump equipped with different impellers were simulated employing the commercial computational fluid dynamics (CFD) software Fluent 12.1 to solve the Navier-Stokes equations for three-dimensional steady flow. A sensitivity analysis of the numerical model was performed with the purpose of balancing the contradiction of numerical accuracy and the cost of calculation. The results showed that, with increasing of the capacity, the axial force varies little. The diameter of the inner balancing-hole plays a dominant role of reducing axial-force of partial emission pump, the axial-force decreases with increasing of inner balancing-hole diameter on the whole range of operation, the axial-force of impeller without inner balancing-hole is approximately 3 times larger than that of impeller with inner balancing-hole. While the diameter of outer balancing-hole has a reverse effects compared with that of inner balancing-hole. With increasing of outer balancing-hole, the axial force increases accordingly.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2003
Author(s):  
Fang Hu ◽  
Yilan Zhou ◽  
Hesong Cui ◽  
Xiao Liu

In order to study the contribution of each harmonic to the output torque and axial torque of the axial magnetic gear with Halbach permanent magnet arrays (HAMG), torque and axial force calculation formulas of the HAMG are proposed based on the air-gap flux density distribution of the HAMG. Because of the difference of the air-gap flux densities at different radii, two simplified torque and axial force calculation formulas are proposed and compared. To improve the torque capability of the HAMG, parametric analysis of eight dimensional parameters is firstly conducted. By parametric analysis, six parameters such as the inner radius have been found to have obvious impact on the output torque and output torque density of the HAMG. The optimization using Maxwell software is then executed for maximizing the output torque density of the HAMG. The output torque density of the optimized HAMG is improved from 78.1 kNm/m3 to 93.3 kNm/m3 with an increase of 19%. Furthermore, spectrum analysis is also presented to illustrate the significant output torque improvement based on the torque calculation formulas.


2013 ◽  
Vol 859 ◽  
pp. 131-134
Author(s):  
Fu Li Zhao ◽  
Yi Qiang Xiang ◽  
Qiang Qiang Wu

The measurement accuracy of the cable tensions in the hanger rods of concrete filled steel tube arch bridges is important for the correct evaluation of bridges condition. Based on Jinpan Bridge-a half through concrete filled steel tube arch bridge with 80 m span in Tiantai, it was put forward the vibration frequency method for testing and evaluate suspender tensions with the help of analysis vibration characters of the suspender. The precision of cable force calculation formula was verified after comparing the practical tension with the designed tension obtained from tension jack method. Then, according to the test results and values predicted by the presented cable force calculation formula, the cable tensions were adjusted. Cable tension test results in the finished bridge show that this method is feasible.


Author(s):  
Dan Sun ◽  
Shuang Wang ◽  
Cheng-Wei Fei ◽  
Yan-Ting Ai ◽  
Ke-Ming Wang

Swirl brake influences the static and rotordynamic characteristics of labyrinth seal which are important in the prediction of turbomachine stability. To study the influence of the swirl brakes on improving seal stability, the effects of swirl brakes on the static and rotordynamic characteristics of labyrinth seals were investigated by the combination of numerical simulation and experiment. First, it was performed to the effects of swirl brake on the static flow characteristics of labyrinth seal with swirl ratio and pressure distribution based on computational fluid dynamics (CFD). And then a comparison between leakage predicted by the CFD model and measurement was presented to verify the accuracy of the simulation. Moreover, an experiment was implemented to analyze the rotordynamic characteristics of labyrinth seal using an improved impedance method based on an unbalanced synchronous excitation method on a rotor test rig. The influences of swirl brake density, length, inlet/outlet pressure ratio, and rotating speed were measured and discussed, respectively. The CFD numerical results show that the swirl brake effectively reduces the seal swirl ratio (∼60–75% less), circumferential pressure difference (∼25–85% less) so that the seal destabilizing forces decrease. With the increasing of the swirl vanes density and length, the seal leakage drops (∼8–20% less). The experimental rotordynamic characteristics results show that it is more obvious to reduce the cross-couple stiffness (∼50–300% less) and increase the direct damping (∼50–60% larger) with the increasing in the number and length of the swirl vanes, and thus the swirl brake improves the seal rotordynamic stability. The efforts of this paper provide a useful insight to clearly understand the effects of swirl brakes on the labyrinth seal static and rotordynamic characteristics, which is beneficial to improve the design of annular seals.


2019 ◽  
Author(s):  
Christopher A. Eggert ◽  
Patrick R. Shea ◽  
Nalin A. Ratnayake ◽  
Steven E. Krist

Sign in / Sign up

Export Citation Format

Share Document