scholarly journals In VivoImaging-Based Mathematical Modeling Techniques That Enhance the Understanding of Oncogene Addiction in relation to Tumor Growth

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Chinyere Nwabugwu ◽  
Kavya Rakhra ◽  
Dean Felsher ◽  
David Paik

The dependence on the overexpression of a single oncogene constitutes an exploitable weakness for molecular targeted therapy. These drugs can produce dramatic tumor regression by targeting the driving oncogene, but relapse often follows. Understanding the complex interactions of the tumor’s multifaceted response to oncogene inactivation is key to tumor regression. It has become clear that a collection of cellular responses lead to regression and that immune-mediated steps are vital to preventing relapse. Our integrative mathematical model includes a variety of cellular response mechanisms of tumors to oncogene inactivation. It allows for correct predictions of the time course of events following oncogene inactivation and their impact on tumor burden. A number of aspects of our mathematical model have proven to be necessary for recapitulating our experimental results. These include a number of heterogeneous tumor cell states since cells following different cellular programs have vastly different fates. Stochastic transitions between these states are necessary to capture the effect of escape from oncogene addiction (i.e., resistance). Finally, delay differential equations were used to accurately model the tumor growth kinetics that we have observed. We use this to model oncogene addiction in MYC-induced lymphoma, osteosarcoma, and hepatocellular carcinoma.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sharon S. Hori ◽  
Ling Tong ◽  
Srividya Swaminathan ◽  
Mariola Liebersbach ◽  
Jingjing Wang ◽  
...  

AbstractThe targeted inactivation of individual oncogenes can elicit regression of cancers through a phenomenon called oncogene addiction. Oncogene addiction is mediated by cell-autonomous and immune-dependent mechanisms. Therapeutic resistance to oncogene inactivation leads to recurrence but can be counteracted by immune surveillance. Predicting the timing of resistance will provide valuable insights in developing effective cancer treatments. To provide a quantitative understanding of cancer response to oncogene inactivation, we developed a new 3-compartment mathematical model of oncogene-driven tumor growth, regression and recurrence, and validated the model using a MYC-driven transgenic mouse model of T-cell acute lymphoblastic leukemia. Our mathematical model uses imaging-based measurements of tumor burden to predict the relative number of drug-sensitive and drug-resistant cancer cells in MYC-dependent states. We show natural killer (NK) cell adoptive therapy can delay cancer recurrence by reducing the net-growth rate of drug-resistant cells. Our studies provide a novel way to evaluate combination therapy for personalized cancer treatment.


2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jeffrey West ◽  
Mark Robertson-Tessi ◽  
Kimberly Luddy ◽  
Derek S. Park ◽  
Drew F.K. Williamson ◽  
...  

Purpose In an upcoming clinical trial at the Moffitt Cancer Center for women with stage 2/3 estrogen receptor–positive breast cancer, treatment with an aromatase inhibitor and a PD-L1 checkpoint inhibitor combination will be investigated to lower a preoperative endocrine prognostic index (PEPI) that correlates with relapse-free survival. PEPI is fundamentally a static index, measured at the end of neoadjuvant therapy before surgery. We have developed a mathematical model of the essential components of the PEPI score to identify successful combination therapy regimens that minimize tumor burden and metastatic potential, on the basis of time-dependent trade-offs in the system. Methods We considered two molecular traits, CCR7 and PD-L1, which correlate with treatment response and increased metastatic risk. We used a matrix game model with the four phenotypic strategies to examine the frequency-dependent interactions of cancer cells. This game was embedded in an ecological model of tumor population-growth dynamics. The resulting model predicts evolutionary and ecological dynamics that track with changes in the PEPI score. Results We considered various treatment regimens on the basis of combinations of the two therapies with drug holidays. By considering the trade off between tumor burden and metastatic potential, the optimal therapy plan was a 1-month kick start of the immune checkpoint inhibitor followed by 5 months of continuous combination therapy. Relative to a protocol giving both therapeutics together from the start, this delayed regimen resulted in transient suboptimal tumor regression while maintaining a phenotypic constitution that is more amenable to fast tumor regression for the final 5 months of therapy. Conclusion The mathematical model provides a useful abstraction of clinical intuition, enabling hypothesis generation and testing of clinical assumptions.


2020 ◽  
Vol 94 (15) ◽  
Author(s):  
M. Schneider ◽  
M. Müller ◽  
A. Yigitliler ◽  
J. Xi ◽  
C. Simon ◽  
...  

ABSTRACT Orf virus (ORFV) represents a suitable vector for the generation of efficient, prophylactic antiviral vaccines against different pathogens. The present study investigated for the first time the therapeutic application of ORFV vector-based vaccines against tumors induced by cottontail rabbit papillomavirus (CRPV). ORFV-CRPV recombinants were constructed expressing the early CRPV gene E1, E2, E7, or LE6. In two independent experiments we used in total 23 rabbits which were immunized with a mixture of the four ORFV-CRPV recombinants or empty ORFV vector as a control 5 weeks after the appearance of skin tumors. For the determination of the therapeutic efficacy, the subsequent growth of the tumors was recorded. In the first experiment, we could demonstrate that three immunizations of rabbits with high tumor burden with the combined four ORFV-CRPV recombinants resulted in significant growth retardation of the tumors compared to the control. A second experiment was performed to test the therapeutic effect of 5 doses of the combined vaccine in rabbits with a lower tumor burden than in nonimmunized rabbits. Tumor growth was significantly reduced after immunization, and one vaccinated rabbit even displayed complete tumor regression until the end of the observation period at 26 weeks. Results of delayed-type hypersensitivity (DTH) skin tests suggest the induction of a cellular immune response mediated by the ORFV-CRPV vaccine. The data presented show for the first time a therapeutic potential of the ORFV vector platform and encourage further studies for the development of a therapeutic vaccine against virus-induced tumors. IMPORTANCE Viral vectors are widely used for the development of therapeutic vaccines for the treatment of tumors. In our study we have used Orf virus (ORFV) strain D1701-V for the generation of recombinant vaccines expressing cottontail rabbit papillomavirus (CRPV) early proteins E1, E2, LE6, and E7. The therapeutic efficacy of the ORFV-CRPV vaccines was evaluated in two independent experiments using the outbred CRPV rabbit model. In both experiments the immunization achieved significant suppression of tumor growth. In total, 84.6% of all outbred animals benefited from the ORFV-CRPV vaccination, showing reduction in tumor size and significant tumor growth inhibition, including one animal with complete tumor regression without recurrence.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
F. A. Rihan ◽  
M. Safan ◽  
M. A. Abdeen ◽  
D. Abdel Rahman

We provide a family of ordinary and delay differential equations to model the dynamics of tumor-growth and immunotherapy interactions. We explore the effects of adoptive cellular immunotherapy on the model and describe under what circumstances the tumor can be eliminated. The possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate of influx of the effector cells and the rate of influx of IL-2. The critical tumor-growth rate, below which endemic tumor does not exist, has been found. One can use the model to make predictions about tumor dormancy.


2018 ◽  
Author(s):  
Jeffrey West ◽  
Mark Robertson-Tessi ◽  
Kimberly Luddy ◽  
Derek S. Park ◽  
Drew F.K. Williamson ◽  
...  

AbstractAn upcoming clinical trial at the Moffitt Cancer Center for women with stage 2/3 ER+breast cancer combines an aromatase inhibitor and a PD-L1 checkpoint inhibitor, and aims to lower a preoperative endocrine prognostic index (PEPI) that correlates with relapse-free survival. PEPI is fundamentally a static index, measured at the end of neoadjuvant therapy before surgery. We develop a mathematical model of the essential components of the PEPI score in order to identify successful combination therapy regimens that minimize both tumor burden and metastatic potential, based on time-dependent trade-offs in the system. We consider two molecular traits, CCR7 and PD-L1 which correlate with treatment response and increased metastatic risk. We use a matrix game model with the four phenotypic strategies to examine the frequency-dependent interactions of cancer cells. This game was embedded into an ecological model of tumor population growth dynamics. The resulting model predicts both evolutionary and ecological dynamics that track with changes in the PEPI score. We consider various treatment regimens based on combinations of the two therapies with drug holidays. By considering the trade off between tumor burden and metastatic potential, the optimal therapy plan was found to be a 1 month kick start of the immune checkpoint inhibitor followed by five months of continuous combination therapy. Relative to a protocol with both therapeutics given together from the start, this delayed regimen results in transient sub-optimal tumor regression while maintaining a phenotypic constitution that is more amenable to fast tumor regression for the final five months of therapy. The mathematical model provides a useful abstraction of clinical intuition, enabling hypothesis generation and testing of clinical assumptions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Christopher C. Evans ◽  
Katherine M. Day ◽  
Yi Chu ◽  
Bridget Garner ◽  
Kaori Sakamoto ◽  
...  

Abstract Background The Mongolian jird (Meriones unguiculatus) has long been recognized as a permissive host for the filarial parasite Brugia malayi; however, it is nonpermissive to another filarial parasite, canine heartworm (Dirofilaria immitis). By elucidating differences in the early response to infection, we sought to identify mechanisms involved in the species-specific clearance of these parasites. We hypothesized that the early clearance of D. immitis in intraperitoneal infection of the jird is immune mediated and parasite species dependent. Methods Jird peritoneal exudate cells (PECs) were isolated and their attachment to parasite larvae assessed in vitro under various conditions: D. immitis and B. malayi cultured separately, co-culture of both parasites, incubation before addition of cells, culture of heat-killed parasites, and culture with PECs isolated from jirds with mature B. malayi infection. The cells attaching to larvae were identified by immunohistochemistry. Results In vitro cell attachment to live D. immitis was high (mean = 99.6%) while much lower for B. malayi (mean = 5.56%). This species-specific attachment was also observed when both filarial species were co-cultured, with no significant change from controls (U(9, 14) = 58.5, p = 0.999). When we replicated these experiments with PECs derived from jirds subcutaneously infected with B. malayi, the results were similar (99.4% and 4.72% of D. immitis and B. malayi, respectively, exhibited cell attachment). Heat-killing the parasites significantly reduced cell attachment to D. immitis (mean = 71.9%; U(11, 14) = 7.5, p < 0.001) while increasing attachment to B. malayi (mean = 16.7%; U(9, 15) = 20, p = 0.002). Cell attachment to both species was reduced when larvae were allowed a 24-h pre-incubation period prior to the addition of cells. The attaching cells were identified as macrophages by immunohistochemistry. Conclusions These results suggest a strongly species-dependent response from which B. malayi could not confer protection by proxy in co-culture. The changes in cell attachment following heat-killing and pre-incubation suggest a role for excretory/secretory products in host immune evasion and/or antigenicity. The nature of this attachment is the subject of ongoing study and may provide insight into filarial host specificity.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A264-A264
Author(s):  
Shanshan Qi ◽  
Hongjuan Zhang ◽  
Ruilin Sun ◽  
Annie An ◽  
Henry Li ◽  
...  

BackgroundToll-like receptors (TLRs) serve critical roles in mediating innate immune responses against many pathogens. However, they may also bind to endogenous ligands and lead to the pathogenesis of autoimmunity. Although TLR8 belongs to the same TLR family as TLR7, its role in inflammation and tumor progression is not yet fully understood due to the lack of suitable animal models. In humans, both TLR7 and TLR8 recognize single-stranded self-RNA, viral RNA, and synthetic small molecule agonists.1, 2 However, mouse Tlr8 is non-functional due to the absence of 5 amino acids necessary for RNA recognition. In order to create a mouse model with functional TLR8, we replaced exon 3 of mouse Tlr8 with human TLR8, therefore developing a hTLR8 knock-in (KI) model. Both heterozygous and homozygous hTLR8 KI mice are viable with inflammatory phenotypes, i.e. enlarged spleens and livers, and significantly higher IL-12 p40 levels under TLR8 agonist treatment. In this study, we evaluated the potential use of hTLR8 mice for cancer immunotherapy studies.MethodshTLR8 mice, together with naïve C57BL/6 mice, were inoculated with MC38 syngeneic tumor cells. Tumor bearing mice were grouped at a mean tumor volume of approximately 100 mm3 for treatment with PBS or 10 mg/kg anti-PD-1 (RMP1-14) antibody. At the efficacy endpoint, spleens and tumors were collected for flow cytometry profiling.ResultsAnti-PD-1 treatment of MC38 tumors in naïve C57BL/6 led to moderate tumor growth inhibition (TGI = 54%). Interestingly, anti-PD-1 treatment showed improved efficacy in hTLR8 mice (TGI = 79%), including 2/10 tumors with complete tumor regression. In comparison, non-treated MC38 tumor growth rate was slower in hTLR8 mice than in naïve mice. Anti-PD-1 treated hTLR8 mice also had significantly increased IFN-γ and TNF-a positive CD4+ T cells in the spleen, along with higher numbers of differentiated effector T cells. In addition, hTLR8 mice have activated dendritic cells and macrophages, acting as critical steps in initiation of the inflammatory process, with higher levels of pro-inflammatory cytokines, such as IL-6, IFN-γ, TNF-a, and IL-1β, which may promote Th1 priming and differentiation of T cells into IFN-γ or TNF-a producing cells.ConclusionshTLR8 mice offer a great tool to model cancer immunotherapy in an inflammatory/autoimmunity prone background. Moreover, hTLR8 mice can be effectively used to shift a ‘cold’ tumor phenotype to ‘hot’ tumors in a syngeneic setting.Ethics ApprovalAnimal experiments were conducted in accordance with animal welfare law, approved by local authorities, and in accordance with the ethical guidelines of CrownBio (Taicang).ReferencesKugelberg E. Making mice more human the TLR8 way. Nat Rev Immunol 2014;14:6.Guiducci C, Gong M, Cepika A-M, et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 2013;210:2903–2919.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ye Wang ◽  
Morvarid Mohseni ◽  
Angelo Grauel ◽  
Javier Estrada Diez ◽  
Wei Guan ◽  
...  

AbstractSHP2 is a ubiquitous tyrosine phosphatase involved in regulating both tumor and immune cell signaling. In this study, we discovered a novel immune modulatory function of SHP2. Targeting this protein with allosteric SHP2 inhibitors promoted anti-tumor immunity, including enhancing T cell cytotoxic function and immune-mediated tumor regression. Knockout of SHP2 using CRISPR/Cas9 gene editing showed that targeting SHP2 in cancer cells contributes to this immune response. Inhibition of SHP2 activity augmented tumor intrinsic IFNγ signaling resulting in enhanced chemoattractant cytokine release and cytotoxic T cell recruitment, as well as increased expression of MHC Class I and PD-L1 on the cancer cell surface. Furthermore, SHP2 inhibition diminished the differentiation and inhibitory function of immune suppressive myeloid cells in the tumor microenvironment. SHP2 inhibition enhanced responses to anti-PD-1 blockade in syngeneic mouse models. Overall, our study reveals novel functions of SHP2 in tumor immunity and proposes that targeting SHP2 is a promising strategy for cancer immunotherapy.


1994 ◽  
Vol 11 (4) ◽  
pp. 743-752 ◽  
Author(s):  
Jian-Dong Li ◽  
Victor I. Govardovskii ◽  
Roy H. Steinberg

AbstractWe have studied the effect of retinal illumination on the concentration of the extracellular space marker tetramethylammonium (TMA+) in the dark-adapted cat retina using double-barreled ion-selective microelectrodes. The retina was loaded with TMA+ by a single intravitreal injection. Retinal illumination produced a slow decrease in , which was maximal in amplitude in the most distal portion of the space surrounding photoreceptors, the subretinal space. The light-evoked decrease in was considerably slower and of a different overall time course than the light-evoked decrease in , also recorded in the subretinal space. decreased to a peak at 38 s after the onset of illumination, then slowly recovered towards the baseline, and transiently increased following the offset of illumination. It resembled the light-evoked decreases previously recorded in the in vitro preparations of frog (Huang & Karwoski, 1990, 1992) and chick (Li et al., 1992, 1994) but was considerably larger in amplitude, 22% compared with 7%. As in frog, where it was first recorded, the light-evoked decrease is considered to originate from a light-evoked increase in the volume of the subretinal space (or subretinal hydration). A mathematical model accounting for diffusion predicted that the volume increase underlying the response was 63% on average and could be as large as 95% and last for minutes. The estimated volume increase was then used to examine its effect on K+ concentration in the subretinal space. We conclude that a light-dependent hydration of the subretinal space represents a significant physiological event in the intact cat eye, which should affect the organization of the interphotoreceptor matrix, and the concentrations of all ions and metabolites located in the subretinal space.


Sign in / Sign up

Export Citation Format

Share Document