scholarly journals SpecificDioscoreaPhytoextracts Enhance Potency of TCL-Loaded DC-Based Cancer Vaccines

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Wei-Ting Chang ◽  
Hui-Ming Chen ◽  
Shu-Yi Yin ◽  
Yung-Hsiang Chen ◽  
Chih-Chun Wen ◽  
...  

Dioscoreatuber phytoextracts can confer immunomodulatory activitiesex vivoand improve regeneration of bone marrow cellsin vivo. In present study, we evaluated specificDioscoreaphytoextracts for useex vivoas a bone-marrow-derived dendritic cell- (DC-) based vaccine adjuvant for cancer immunotherapy. FractionatedDioscoreaextracts (DsII) were assayed for their effect on maturation and functions of DCex vivoand antimelanoma activity of DC-based vaccinein vivo. The phytoextract from 50–75% ethanol-precipitated fraction ofDioscorea alatavar.purpureaTainung no. 5 tuber, designated as DsII-TN5, showed a strong augmentation of tumor cell lysate- (TCL-) loaded DC-mediated activation of T-cell proliferation. DsII-TN5 stimulated the expression of CD40, CD80, CD86, and IL-1βin TCL-loaded DCs and downregulated the expression of TGF-β1. DC vaccines prepared by a specific schema (TCL (2 h) + LPS (22 h)) showed the strongest antitumor activity. DsII-TN5 as a DC vaccine adjuvant showed strong antimelanoma activity and reduced myeloid-derived suppressor cell (MDSC) population in tested mice. DsII-TN5 can also activate DCs to enhance Th1- and Th17-related cytokine expressions. Biochemical analysis showed that DsII-TN5 consists mainly of polysaccharides containing a high level (53%) of mannose residues. We suggest that DsII-TN5 may have potential for future application as a potent, cost-effective adjuvant for DC-based cancer vaccines.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3931-3931
Author(s):  
John Welch ◽  
Haixa Niu ◽  
Geoffrey L. Uy ◽  
Peter Westervelt ◽  
Camille N. Abboud ◽  
...  

Abstract We sought to determine whether bexarotene can be combined with decitabine in elderly and relapsed AML patients. Both drugs have been shown to be well tolerated in acute myeloid leukemia (AML) patients as single agents, and these agents have non-overlapping mechanisms and side-effect profiles; bexarotene activates transcriptional effects of RXRA through hetero- and homodimers, while decitabine is thought to act through DNA hypomethylation. Furthermore, through Affymetrix expression array profiling of 111 AML patients and Nanostring analysis of 7 MDS and AML patients, we observed consistently elevated levels of RXRA relative to RARA, suggesting that a ligand specific for RXR may be more effective to induce AML differentiation than the RARA ligand ATRA. We treated 18 elderly (≥ 60 years old) or relapsed AML patients in 3+3 dose escalating bexarotene cohorts: 100 mg/m2/day, 200 mg/m2/day, 300 mg/m2/day. All patients were treated with decitabine 20 mg/m2IV on days 1-5 of 28 day cycles. All patients were monitored for hypertriglyceridemia and hypothyroidism, and treated accordingly. The average age was 73, the average performance status was 1, an adverse karyotype was observed in 9 patients, and 12 patients had relapsed after prior therapy. Only one patient experienced a dose limiting toxicity (grade 3 fatigue) and 8 patients were treated with the maximum dose (myelosuppression, infection, differentiation syndrome, hypertriglyceridemia, hyperlipidemia, hypothyroidism, nausea, weight loss and reversible electrolyte abnormalities were not considered dose limiting). The overall response rate was 22%: 1 patient achieved complete remission with incomplete count recovery (CRi) and 3 patients achieved blast reduction greater than 50% (partial response, PR). In addition, six patients achieved stable disease (SD). Patients with CRi, PR, or SD completed an average of 4.25 cycles, while other patients completed an average of 1.2 cycles. Of note, 3 patients successfully transitioned to allogeneic transplant following therapy (average age 68). We correlated ex vivo bexarotene sensitivity with clinical response. Bone marrow cells were collected on day 0 and day 3 of bexarotene therapy (during cycle 1, decitabine was administered on day 3 after bone marrow collection) and co-cultured with irradiated MS5 murine stromal cells for 72hrs with or without further bexarotene treatment. We used flow cytometry to compare CD11b expression in cells treated with and without bexarotene ex vivo, and compared expression between samples collected on day 0 vs day 3 (in vivo treatment). Bexarotene increased CD11b expression greater in the 4 responding patients vs non-responders (fold increase in CD11b: ex vivo average 2.1 ± 0.3 vs 1.1 ± 0.1 fold, p < 0.003; and in vivo 1.6 ± 0.3 vs 0.7 ± 0.2 fold, p < 0.03; increase in absolute percentage of CD11b+ cells: ex vivo average 24% ± 2.6% vs 0.7% ± 1%, p < 0.001; and in vivo 13.6% ± 4% vs -3.6% ± 2.2%, p < 0.002). Furthermore, all 4 responding patients demonstrated an equivalent or increased induction of CD11b when treated ex vivo with ATRA compared with bexarotene. These results show that bexarotene, a retinoid which selectively binds to and activates RXRs, but not RARs, can be safely combined with decitabine in relapsed and refractory AML patients. This combination leads to partial response in a subset of patients, is well tolerated, and can bridge elderly patients to allogeneic transplant. Because ex vivo bexarotene treatment identified all patients achieving a PR, further studies should focus on patients who display ex vivo sensitivity. Finally, the mechanism of RXRA-activated differentiation is likely to be through the RXRA/RARA heterodimer, as all 4 patients who responded to bexarotene also responded to ATRA when tested ex vivo. Disclosures: Welch: Eisai: Research Funding. Off Label Use: Bexarotene for the treatment of AML. Abboud:Ariad, Alexion, Novartis, Teva: Honoraria, Speakers Bureau. Stockerl-Goldstein:Celgene : Speakers Bureau; Millennium: Speakers Bureau.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3154-3154
Author(s):  
Osamu Iijima ◽  
Koichi Miyake ◽  
Hanako Sugano-Tajima ◽  
Tsutomu Igarashi ◽  
Chizu Kanokoda ◽  
...  

Abstract Abstract 3154 Hypophosphatasia (HPP) is an inherited skeletal disease caused by genetic defects of tissue-nonspecific alkaline phosphatase (TNALP). TNALP is an ectoenzyme which is attached to the outside plasma membrane via a GPI anchor and plays an essential role in bone mineralization. The major symptoms are hypomineralization of systemic bones, respiratory insufficiency and epileptic seizures. Severe HPP is often fatal. Since ALP functions on the exterior of the cells, enzyme replacement therapy (ERT) is a potential approach to treat HPP. Although previous trials of ERT using various forms of soluble ALP showed no clinical benefit, it was recently demonstrated that TNALP with deca-aspartates at the C terminus (TNALP-D10) had a high affinity for bone tissue and repeated injections of TNALP-D10 successfully rescued lethal HPP mice. HPP mice were generated by knockout the mouse TNALP gene (Akp2) and phenotypically mimic to severe infantile HPP and develop hypomineralization, growth failure and epileptic seizures after birth. The plasma ALP activity in HPP mice was less than 0.01 U/ml (approx. 0.1 U/ml in wild type (wt) mice) and the average life span of non-treated HPP mice is about 20 days. We have also shown that a single intravenous injection of either lentiviral or AAV vector expressing TNALP-D10 resulted in prolonged survival and phenotypic correction of HPP mice. In this in vivo gene therapy, bone cells were not efficiently transduced, but the plasma ALP activity derived from TNALP-D10 secreted from transduced liver or muscle cells was maintained at extremely high levels (10 to 100 folds higher than that of wt mice). As an alternative approach, we are studying the feasibility of hematopoietic stem cells (HSC) based ex vivo gene therapy for HPP. After homing of HSC to the bone marrow, local expression of TNALP in the bone should be beneficial to improve bone mineralization. Other potential advantages of this strategy compared with an in vivo systemic gene therapy include lifelong expression of TNALP, no risk of germline gene transfer, and no immunoreaction against viral vector. Lineage negative bone marrow cells (BMC) were harvested from B6.CD45.1 mice (Ly5.1) using the Mouse Hematopoietic Progenitor (Stem) Cell Enrichment Set (BD Bioscience) and incubated with lentiviral vector expressing GFP or TNALP-D10 for 20 hrs at an moi of 50 with mSCF, mIL3 and rhIL6. Transduction efficiency assessed by GFP expression was approximately 40 % under the condition used. Recipient neonatal mice (Ly5.2) were sub-lethally irradiated at 4Gy and received BMC (1 × 106̂ cells) through the jugular vein on day 2. Irradiated neonatal wt mice showed a slight reduction of the growth rate but normal physical activity and healthy appearance. GFP positive donor cells migrated to the bone marrow in recipient mice. FACS analysis of the peripheral blood samples 4 to 12 weeks after transplantation demonstrated that approximately 30 % of Ly5.1 donor cells were stably detected in all lineage blood cells of recipient mice. After treatment of neonatal HPP mice with TNALP-D10 expressing BMC, the plasma ALP activity was elevated to 1 to 2 U/ml at 4 weeks of age and remained at this level during the observation period. The treated mice actively moved in the cage without epileptic seizures and the life span was prolonged over 3 months. X-ray examination of the skeleton showed that mineralization was significantly improved compared to non-treated HPP mice, but not completely normalized compared to age matched wt mice. These results indicate that lentivirally transduced BMC can serve as a reservoir for continuous supply of TNALP-D10 to rescue lethal HPP mice. However, the concentration of TNALP-D10 in the bone may not be sufficient for complete correction of skeletal abnormalities. Further optimization of gene transfer and neonatal BMT is under way to increase the plasma ALP activity. HSC mediated ex vivo gene therapy is now being applied to treat not only hematological diseases but also neurological disorders such as adreno leukodystrophy and metachromatic leukodystrophy. Hypophosphatasia, a systemic bone disease, is also an important target for ex vivo gene therapy. Disclosures: No relevant conflicts of interest to declare.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Koen E van der Bogt ◽  
Ahmad Y Sheikh ◽  
Sonja Schrepfer ◽  
Grant Hoyt ◽  
Feng Cao ◽  
...  

Introduction: A comparative analysis of the efficacy of different cell candidates for the treatment of heart disease remains to be described. This study aimed to evaluate the therapeutic efficacy of 4 cell types in a murine model of myocardial infarction. Methods: Bone-marrow cells (MN), mesenchymal cells (MSC), skeletal myoblasts (SkMb) and fibroblasts (Fibro) were isolated from male L2G transgenic mice (FVB background) that express firefly luciferase (Fluc) and green fluorescence protein (GFP). Cells were characterized by flow cytometry, bioluminescence imaging (BLI), and luminometry. Female FVB mice (n=60) underwent LAD ligation and were randomized into 5 groups to intramyocardially receive one cell type (5 × 10 5 ) or PBS. Cell survival was measured in vivo by BLI and ex vivo by TaqMan PCR at week 6. Cardiac function was assessed by echocardiography and invasive hemodynamic measurements at week 6. Results: Fluc expression correlated with cell number in all groups (r 2 >0.93). In vivo BLI revealed donor cell death of MSC, SkMb, and Fibro within 3 weeks after transplantation. By contrast, cardiac signal was still present after 6 weeks in the MN group, as confirmed by PCR (p<0.01). Echocardiography showed significant preservation of fractional shortening in the MN group compared to controls (p<0.05). Measurements of left ventricular end-systolic/diastolic volume revealed the least amount of ventricular dilatation occurred in the MN group (p<0.05). Conclusion: This is the first study to directly compare a variety of cell candidates for myocardial therapy and indicates that MN exhibit a favorable survival pattern, which translates into preservation of cardiac function.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4262-4262
Author(s):  
Mengyu Wang ◽  
Gunnar Kvalheim ◽  
Svein-Ole Mikalsen ◽  
Jahn M. Nesland ◽  
Gunhild Mælandsmo ◽  
...  

Abstract Recent studies have revealed that stem cell like cancer cells can be isolated from different types of primary tumor tissue from brain, breast and skin. Such cells have high capability to form tumors when transplanted into experimental animals. Here we describe a newly developed nude rat mesenchymal stem cellS (rMSCs), which spontaneously changed in vivo properties during culturing. Rat bone marrow cells were isolated from the femur and tibia of a male nude/nude rat and cultured in DMEM medium supplemented with 20% bovine fetal serum (FCS). Non- adherent cells were removed after 72 hours of incubation and the adherent bone marrow cells were cultured until a confluent layer appeared. Adherent cells were detached by trypsin, washed and continued to be cultured. After 23 passages by high-density culture the rMSCs spontaneously became more homogenous and formed spheroids in three-dimensional culture. Following ex vivo culturing under different growth conditions these cells were still able to differentiate into fat and neural like cells. The rMSCs also contain high numbers of colony-forming-unit-fibroblasts(cfu-f). The “tumourigenic” growth pattern observed ex vivo prompted us to examine the rMSCs in vivo. Following subcutaneous injection of 1 x106 cells into nude/nude mice a solid tumor appeared under the skin after 12 days. Moreover, intravenous injections and direct injections into left heart ventricle of rMSCs created solid tumors both in the lung, abdominal cavity, bone and skin. Both phenotypic and genetic characterization of early and late passages of the rMSCs and the tumors formed in the mice are being investigated and more details will be presented at the meeting.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Beatriz Cesar ◽  
Ana Paula R. Abud ◽  
Carolina C. de Oliveira ◽  
Francolino Cardoso ◽  
Raffaello Popa Di Bernardi ◽  
...  

A homeopathic complex medication (HCM), with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now reportin vivoimmunophenotyping of total bone marrow cells andex vivoeffects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measuredin vitro. Afterin vivotreatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects ofex vivoHCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were inducedin vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1384-1384
Author(s):  
Mohammad Dehghani ◽  
Damla Olcaydu ◽  
Pavel Uhrin ◽  
Bernd Binder ◽  
Johannes Breuss

Abstract Hematopoietic Progenitor Cells (HPC) can be mobilized from bone marrow into the circulation in response to a number of stimuli including G-CSF, AMD3100 (antagonist of CXCR4-DSF-1 axis) and vascular endothelial growth factor (VEGF). The main mechanism for mobilization of HPCs upon stimulation by classical “mobilizers”as G-CSF is thought to be through extracellular matrix proteolysis in the marrow. Urokinase is a serine protease present in the marrow and contributes to mobilization of stem cells upon binding to its receptor (uPAR) and activating plasminogen that leads to matrix degradation. Our previous data show that the effect of VEGF on endothelial cell migration is exerted through activation of the uPA/uPAR system and through co-internalization of β 1 integrins. Upon internalization of these receptors, cells detach from their underlying extra-cellular matrix (ECM) as well as from stromal cells. We hypothesize that the contribution of VEGF to HPC mobilization occurs through a similar mechanism. We also want to analyze the influence of uPA/uPAR deficiencies on mobilization of Gr-1+/CD-11b+ myeloid and c-kit +/Sca-1+ (SK)cells by VEGF and AMD3100 and compare it with G-CSF as a classical “mobilizer”. Wild type, uPA knockout and uPAR knockout mice in C57BL6 background were used for in vivo experiments. We collected peripheral blood before and 2 hours after i.p. injection of VEGF-E and AMD3100 and assessed the number of SK cells and myeloid cells by FACS analysis. We also administered G-CSF for 5 days and compared blood samples before and after the experiment. To evaluate the effect of VEGF on HPC integrin expression, femurs of the respective animals were incubated with VEGF in an ex vivo experimental model and β1 expression was assessed by FACS analysis. In vivo data demonstrated a significantly reduced responsiveness of uPA−/− mice to VEGF-E in the first 2 hours after the injection. This decreased responsiveness to VEGFis observed in uPAR−/− mice but to a lesser degree than in uPA−/− mice..(40 +/−16 % and21 +/− 20% respectively vs 65 +/− 24 % in wt, means and SD). Injection of urokinase together with VEGF to uPA−/− mice rescues the lack of mobilization of SK cells. Ex vivo stimulation of uPAR knockout femoral bone marrow cells with VEGF for 20 minutes provides evidence that the internalization of β1 integrins upon VEGF stimulation is uPAR dependent. VEGF can also increase in vivo the number of Gr-1+/CD-11b+ myeloid cells after 2 hours in wt mice (96 +/− 45%) but not in urokinase deficient or urokinase receptor deficient mice (7 +/− 11% and 21+/−33%, respectively). AMD3100 has a strong effect on mobilization of SK cells in wt animals within 2 hours (increase of 2.8+/−0.78 times) but cannot mobilize these cells in uPA and uPAR deficient mice to the same extend (0.8+/−0.65 times and 0.1+/−0.07 respectively). G-CSF injection for 5 days mobilizes Gr-1+/CD-11b+and SK cells in wt and knock out mice to a similar extent, indicating that the capacity to release these cells from the bone marrow is not affected by uPA or uPAR gene deficiency. Our results demonstrate a reduced mobilization of uPA−/− and uPAR−/− HPCs and myeloid cells in response to VEGF compared to wt mice. VEGF leads to internalization of the expression of β1 integrins on the surface of SK cells in wt but not in uPAR−/− mice. In addition, we could show that the uPA/uPAR system plays a role in AMD3100-dependent mobilization of these cells. These data indicate that the uPA – uPAR system plays a pivotal role in short-term but not long-term bone marrow HPC and PMN leukocyte mobilization.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1568-1568
Author(s):  
Thomas Cluzeau ◽  
Guillaume Robert ◽  
Jean Michel Karsenti ◽  
Frederic Luciano ◽  
Nicolas Mounier ◽  
...  

Abstract Background AZA is currently the first line treatment for intermediate-2 and high-risk IPSS myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) with 20 to 30% of marrow blasts. We have previously reported that cells from AZA-resistant patients exhibit impaired mitochondrial apoptosis but maintain functional autophagy (Cluzeau et al. Cell Cycle 2011, Oncotarget 2012). Acadesine (ACA), also known as AICAR or Aica-Riboside is a nucleoside analogue that has been shown to trigger autophagy in AZA resistant cells. Methods In vitro effect: We used an AZA-resistant MDS/AML cell line (SKM1-R) as a tool to decipher AZA resistance. Cells were treated with increasing doses of ACA (0.5-2mM) or with a maximally efficient dose of AZA (1µM) and induction of cell death was assessed by cell metabolism and Propidium Iodide (PI) assays. In vivo effect: The effect of ACA was also assessed in a mouse xenograft model of SKM1-R cells. When tumors reached 100 mm3, mice were treated daily with an intra-peritoneal injection of the vehicle alone, 5 mg/kg AZA, or 200 or 400 mg/kg ACA. Ex vivo effect: We finally used primary bone marrow cells from AZA-resistant MDS or AML-resistant patients (n=12) (clinicalTrials.gov identifier: NCT01210274) to perform cell metabolism assays. Results In vitro effect: Only a slight decrease of cell metabolism and a moderate increase of PI staining were detected following stimulation with 1µM AZA confirming the resistance of SKM1-R cells to AZA. In identical conditions, ACA induced a robust increase of cell death in AZA-resistant cells with a maximal effect at 2mM. Induction of cell death by ACA was independent of apoptosis but relied on autophagy induction, as shown by the conversion of LC3-I to LC3-II and an increase of cathepsin B activity, that are respectively early and late markers of autophagy. In vivo effect: As expected, AZA failed to trigger tumor regression of AZA-resistant SKM1-R cells in vivo compared to vehicle alone, whereas ACA was found to induce a statistically significant inhibition of tumor growth at both tested concentrations. Ex vivo effect:Bonferroni’s Multiple Comparison Test performed in 6 AZA-resistant MDS patients showed significant reduction of cell metabolism between ACA and untreated cells (66% and 78% at 1 and 2 mM of ACA) and between ACA and AZA-treated cells (60% and 72% at 1 and 2mM of ACA,). Identical results were found in 6 AML AZA-resistant AML patients with a significant reduction of cell metabolism between ACA and untreated cells (63% and 81% at 1 and 2mM of ACA) and ACA and AZA-treated cells (56% and 75% at 1 and 2 mM of ACA). Conclusion Our results show the high efficacy of Acadesine in vitro, in vivo and ex vivo in AZA-resistant MDS and AML cell lines and patient’s bone marrow cells. Induction of cell death by autophagy seems to be the main mechanism by which ACA circumvents AZA resistance in MDS and AML cells. These encouraging results prompted us to initiate a multicenter phase I/II clinical trial with the French MDS Group (GFM) to assess the safety and efficacy of ACA in MDS and AML patients with 20 to 30% of marrow blasts not responding or relapsing after AZA treatment (clinicalTrials.gov identifier: NCT01813838). Disclosures: Cluzeau: Advancell: Research Funding. Robert:Advancell: Research Funding. Auberger:Advancell: Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4150-4150
Author(s):  
Han M. Lee ◽  
Hui Zhang ◽  
Bernard G. Forget

Abstract Ectopic expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell (HSC) self-renewal and expansion ex vivo and in vivo. Murine bone marrow transplantation experiments have also shown that overexpression of HOXB4 in HSCs confers a competitive repopulation advantage in vivo. Identifying the largely unknown downstream targets of HOXB4 would be beneficial in understanding the molecular mechanisms associated with HSC self-renewal and expansion. In order to identify the downstream targets of HOXB4, we have constitutively overexpressed HOXB4 in the primitive hematopoietic progenitor cell line, EML, by transduction of the cells with the MSCV-HOXB4-IRES-GFP retroviral vector used by workers in studies of primary murine bone marrow cells. Similar to the results from ex vivo and in vivo experiments with primary bone marrow cells, we found that HOXB4 overexpression conferred a competitive growth advantage to EML cells compared to EML cells expressing GFP alone. However, as the EML cells overexpressing HOXB4 were maintained in culture, the competitive growth advantage disappeared over time and was completely lost after 3 months of continuous culture. No abnormal block to differentiation was observed when EML cells overexpressing HOXB4 were stimulated by ATRA + IL3 to differentiate along the granulocyte/macrophage pathway to produce the more mature GM-CSF-dependent cell line designated EPRO (EML-derived promyelocytes). Our analysis showed that HOXB4 was still being overexpressed in the EPRO cells and that this overexpression did not give the EPRO cells a competitive growth advantage. This finding suggests that HOXB4 gives a competitive growth advantage only to more primitive EML cells and does not have the same effect on the more mature EPRO cells. The gene expression profile of cells that overexpressed HOXB4 was compared to that of cells transduced with vector alone. Our first set of results from gene expression profile experiments showed that a variety of gene products were differentially expressed at statistically higher or lower levels than in control cells when HOXB4 was overexpressed. In our first analysis using chip A of the Affymetrix U74v2 chip set, a microarray chip containing oligonucleotide probes for over 12,000 gene products, we found that a total of 189 genes were differentially expressed between cells that overexpressed HOXB4 and cells that did not. Most striking was the downregulation by over 30 fold in cells that overexpressed HOXB4 of a mRNA encoding a protein in a pro-apoptotic signaling pathway. Other potentially interesting genes that were differentially expressed included: 10 transcription factors, 6 cell cycle-associated proteins, 2 chemokine receptors and 4 additional apoptosis pathway-related proteins. These findings suggest that the EML cell line is a valid model system to use in elucidating downstream targets of HOXB4. Future studies are being planned to utilize EML cells overexpressing a HOXB4 protein fused to a truncated estrogen receptor (ER) to identify the genes that are direct downstream targets of HOXB4 after short-term induction of HOXB4 activity by tamoxifen.


2011 ◽  
Vol 236 (11) ◽  
pp. 1291-1297 ◽  
Author(s):  
Abdul Mannan Baru ◽  
Jayendra Kumar Krishnaswamy ◽  
Anchana Rathinasamy ◽  
Michaela Scherr ◽  
Matthias Eder ◽  
...  

Dendritic cells (DCs) are essential for the generation and modulation of cell-mediated adaptive immunity against infections. DC-based vaccination involves transplantation of ex vivo-generated DCs loaded with antigen in vitro, but remains limited by the number of autologous or allogeneic cells. While in vitro expansion and differentiation of hematopoietic stem cells (HSCs) into DCs seems to be the most viable alternative to overcome this problem, the complexity of HSC expansion in vitro has posed significant limitations for clinical application. We immortalized lineage-depleted murine hematopoietic bone marrow (lin−BM) cells with HOXB4, and differentiated them into CD11c+MHCII+ DCs. These cells showed the typical DC phenotype and upregulated surface expression of co-stimulatory molecules on stimulation with various toll-like receptor ligands. These DCs efficiently presented exogenous antigen to T-cells via major histocompatibility complex (MHC) I and II and viral antigen on infection. Finally, they showed migratory capacity and were able to generate antigen-specific primed T-cells in vivo. In summary, we provide evidence that HOXB4-transduced lin−BM cells can serve as a viable means of generating fully functional DCs for scientific and therapeutic applications.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S87-S88
Author(s):  
Kuzhali Muthumalaiappan ◽  
Maria Camargo Johnson ◽  
Julia Walczak ◽  
Vimal Subramaniam ◽  
Anthony J Baldea ◽  
...  

Abstract Introduction Previous burn and traumatic injury studies have established that adrenergic signaling is increased after burn injury and may lead to an impairment of hematopoietic cell development in the bone marrow (BM). Nonetheless, mesenchymal stem cells (MSCs), which have gained momentum in regenerative medicine also play a predominant role in the BM niche. Understanding the propensity of the adrenergic receptor (AR) response by MSCs can be utilized for devising targeted therapies. However, the traditional plastic adherence procedure using ex vivo culture of BM cells for several weeks may skew the actual characteristics of MSCs. Our current study focused on isolating MSCs from freshly obtained BM in a murine scald burn model with a goal to characterize the expression pattern of native AR subgroups present on BM MSCs as compared to sham mice. Methods Eight, two-month-old adult female mice were subjected to a 15% total body 3rd degree burn or sham burn. The mice were sacrificed 7 days later. Femurs were removed and total bone marrow cells were flushed out. Multi parametric flow cytometry was used to gate for cells negative for hematopoietic cell markers (CD45, CD11B) and positive for MSC markers (CD105, CD106, SSEA, Ly6A) and AR subgroups (α1, α2, β1, β2, β3). We measured the number of BM MSCs, quantified the subtypes of ARs present on MSCs, and compared the ratio of AR antibody binding per total MSC population. Results Overall the frequency of MSCs per million total BM cells decreased by 48% post-burn injury with165,300 ± 194 in sham versus 110,000 ± 30 in burn displayed as bar graph in Panel A. Over 90% of MSCs consistently express β2 AR and only 10% express α2 AR subgroup in both scald and sham burn. Presence of other subgroups ranged from 50% to 80% of MSCs as seen in histograms to the right of dotted line in Panel B. Our AR propensity score based on AR mean fluorescence intensity adjusted to total number of MSCs present was increased by 2.8-fold for α1, 2.5-fold for β1, 1.6-fold for β3, and 1.3-fold for β2 AR subgroups (Panel C). These findings indicate burn injury not only decreases the frequency of BM MSCs but also increases the affinity of certain AR subgroups present on MSCs. Since BM MSCs are the major source of cytokines, chemokines and growth factors; detailed studies on AR mediated signaling in BM MSCs is warranted. Conclusions Polarization of AR signaling in BM MSCs by burn-induced catecholamines may have broader implications for comorbidities such as bone resorption and muscle wasting observed in human patients post burn trauma.


Sign in / Sign up

Export Citation Format

Share Document