scholarly journals Evaluation of a New Acid Solution for Texturization of Multicrystalline Silicon Solar Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ryosuke Watanabe ◽  
Shuuji Abe ◽  
Satoshi Haruyama ◽  
Tatsunobu Suzuki ◽  
Mitsuo Onuma ◽  
...  

Surface texturing methods using an alkaline solution for monocrystalline Si (c-Si) solar cells have been widely accepted to improve cell performance. However, multicrystalline Si (mc-Si) cells are difficult to be texturized by alkaline etching, because the grains in the substrates are randomly oriented. In this study, we considered a HF/HNO3/H2SO4acid solution for texturing the mc-Si cells. We evaluated the morphology of the textured surfaces and the reflectance spectra from the surfaces. The deep dimple textured structures are formed on the surfaces for only 30 seconds of the acid texturing process. This behavior results from the effect of H2SO4in the solution. This process obtains up to 14.7% conversion efficiencies of the acid textured cells. These conversion efficiencies are up to 1.3 times larger than those of the mirror-etched cells.

2014 ◽  
Vol 521 ◽  
pp. 52-55
Author(s):  
Chun Rong Xue ◽  
Yu Qin Gu ◽  
Ming Liang Deng

This work presents study of both the antireflection coatings on silicon solar cells and surface texture of silicon solar cell, with the aim to prepare high quality Si solar cells. Surface texturing, either in combination with an anti-reflection coating or by itself, can be used to minimize reflection, but the large reflection loss can be reduced significantly via a suitable anti-reflecting coatings. Significant improvement of the short circuit current after anti-reflecting coatings was observed. It is found that the currentvoltage characteristic with a double-layer anti-reflecting coatings is better than that with a single-layer anti-reflecting coatings. Depositing a multilayer on the textured surface reduces the large reflection loss significantly. The short circuit current of silicon solar cells has significant improvement after depositing anti-reflecting coatings on textured surface silicon, and it increases the efficiency of the Si solar cells.


2017 ◽  
Vol 5 (35) ◽  
pp. 9005-9011 ◽  
Author(s):  
Ju Hwan Kim ◽  
Dong Hee Shin ◽  
Ha Seung Lee ◽  
Chan Wook Jang ◽  
Jong Min Kim ◽  
...  

The co-doping of graphene with Au nanoparticles and bis(trifluoromethanesulfonyl)-amide is employed for the first time to enhance the performance of graphene/porous Si solar cells.


2018 ◽  
Vol 33 (11) ◽  
pp. 1515-1522 ◽  
Author(s):  
Cong Thanh Nguyen ◽  
Koichi Koyama ◽  
Huynh Thi Cam Tu ◽  
Keisuke Ohdaira ◽  
Hideki Matsumura

Abstract


2019 ◽  
Vol 12 (06) ◽  
pp. 1950080
Author(s):  
Zhou Gao ◽  
Xing Jiang ◽  
Xingbo Wang ◽  
Yongji Chen ◽  
Jian Liu ◽  
...  

Glass frit plays an important role in the silver paste for silicon solar cells. In this work, we prepare glass frit doped with different rare-earth elements (Y, La, Sm, Er) and study how the doping element affects the performance of the solar cells. Solar cells with La-doped and Sm-doped glass frits show average conversion efficiencies higher than 17.5%, while solar cells with Y-doped or Er-doped frit show lower efficiencies. By analyzing the Raman spectra of the rare-earth doped glass frits, we find that the average coordination number of Te–O ([Formula: see text]) in the glass can be tuned by the rare-earth dopant. La or Sm doping leads to a moderate value of [Formula: see text], which is believed to achieve a glass formation ability that optimizes the structure of the Ag–Si interface of the cell for the best performance.


1997 ◽  
Vol 49 (1-4) ◽  
pp. 143-148 ◽  
Author(s):  
Yoshihiro Hishikawa ◽  
Eiji Maruyama ◽  
Shigeo Yata ◽  
Makoto Tanaka ◽  
Seiichi Kiyama ◽  
...  

Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 430 ◽  
Author(s):  
Cao Yu ◽  
Shengzhi Xu ◽  
Jianxi Yao ◽  
Shuwei Han

Crystalline silicon (c-Si) is the dominating photovoltaic technology today, with a global market share of about 90%. Therefore, it is crucial for further improving the performance of c-Si solar cells and reducing their cost. Since 2014, continuous breakthroughs have been achieved in the conversion efficiencies of c-Si solar cells, with a current record of 26.6%. The great efficiency boosts originate not only from the materials, including Si wafers, emitters, passivation layers, and other functional thin films, but also from novel device structures and an understanding of the physics of solar cells. Among these achievements, the carrier-selective passivation contacts are undoubtedly crucial. Current carrier-selective passivation contacts can be realized either by silicon-based thin films or by elemental and/or compound thin films with extreme work functions. The current research and development status, as well as the future trends of these passivation contact materials, structures, and corresponding high-efficiency c-Si solar cells will be summarized.


RSC Advances ◽  
2015 ◽  
Vol 5 (124) ◽  
pp. 102682-102688 ◽  
Author(s):  
Ming Hong ◽  
Tongtong Xuan ◽  
Jiaqing Liu ◽  
Ziyao Jiang ◽  
Yiwei Chen ◽  
...  

CIS/ZnS QDs were synthesized by microwave irradiation in air. The fabricated QDs/PMMA composite films were first applied to Si solar cells to improve the conversion efficiency by 3.8%.


2015 ◽  
Vol 1132 ◽  
pp. 144-159 ◽  
Author(s):  
A.A. Fashina ◽  
K.K. Adama ◽  
M.G. Zebaze Kana ◽  
Winston O. Soboyejo

We investigate the effect of surface texturing on the light trapping properties of Silicon wafers as a function of reflection reduction and surface morphology. This was achieved by structuring a random square-based pyramids pattern on the surface of Silicon substrate using anisotropy etching. The light trapping effect was optimized for silicon solar cells by investigating the dependence of the silicon surface texturing on the process parameters such as etchant concentration, etching time and temperature. We study the surface morphology by analyzing the surface behaviour of the textured substrate using the atomic force microscope and scanning electron microscope. The results of roughness and optical reflection were obtained using the surface profiler and the UV/VIS the spectrometer respectively. In addition, an analytical modelling method was developed to determine the angles of incidence of light rays with each of the facets of the pyramids and the coordinate of the reflected light rays. The method used here is based on 3-D vector geometry of the pyramidal facets. The optimum parameters are found to be 40min, a temperature of 80oC and with KOH/IPA/DI in the ratio [2:4:46] by volume, yielding a surface roughness over 600 nm and a relative optical reflectance in the visible spectrum less than 10%, using polished Si as reference. The results and analysis of both the modelled and measured reflectance, suggest that the performance of the light trapping technique has a big potential in silicon solar cells application.


Sign in / Sign up

Export Citation Format

Share Document