scholarly journals Anti-HMGB1 Neutralizing Antibody Ameliorates Neutrophilic Airway Inflammation by Suppressing Dendritic Cell-Mediated Th17 Polarization

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Fang Zhang ◽  
Gang Huang ◽  
Bo Hu ◽  
Li-Ping Fang ◽  
E-Hong Cao ◽  
...  

We demonstrate that high mobility group box 1 protein (HMGB1) directs Th17 skewing by regulating dendritic cell (DC) function. First, ourin vitrostudies reveal that recombinant HMGB1 (rHMGB1) activates myeloid DCs to produce IL-23in vitro, and rHMGB1-activated DCs prime naïve lymphocytes to produce the Th17 cytokine IL-17A. Second, we demonstrate that anti-HMGB1 neutralizing antibody attenuates HMGB1 expression, neutrophilic inflammation, airway hyperresponsiveness, and Th17-related cytokine secretionin vivoby using a murine model of neutrophilic asthma induced by ovalbumin (OVA) plus lipopolysaccharide (LPS). Furthermore, anti-HMGB1 neutralizing antibody decreases the number of Th17 cells in lung cells and suppresses the production of IL-23 by lung CD11C+APCs. Finally, we show that intranasal adoptive transfer of rHMGB1-activated DCs was sufficient to restore lung neutrophilic inflammation and the Th17 response in a DC-driven model of asthma, whereas the transfer of rHMGB1 plus anti-HMGB1-treated mDCs significantly reduced these inflammation phenotypes. These data suggest, for the first time, that HMGB1 drives the DC-polarized Th17-type response in allergic lung inflammation and that blocking HMGB1 may benefit the attenuation of neutrophilic airway inflammation in asthma.

2017 ◽  
Vol 41 (4) ◽  
pp. 1370-1382 ◽  
Author(s):  
Yuqing Chen ◽  
Xin Zhou ◽  
Jianou Qiao ◽  
Aihua Bao

Background: Non-small-cell lung cancer (NSCLC) is a deadly cancer with high mortality rate. Drug resistance represents a main obstacle in NSCLC treatment. High mobility group box-1 (HMGB1) protein promotes drug resistance in NSCLC cells by activating protective autophagy. Methods: In the current study, we investigated the regulatory role of microRNA-142-3p (miR-142-3p) in HMGB1-mediated autophagy of NSCLC cells and its impact on drug resistance of NSCLC in vitro and in vivo. HMGB1 was identified as a putative target gene of miR-142-3p by in silico analysis. Our luciferase reporter assay results confirmed that miR-142-3p directly targets the 3’-UTR of HMGB1 in NSCLC cells. Results: MiR-142-3p overexpression suppressed while miR-142-3p knockdown increased HMGB1 mRNA and protein expression. Starvation induced HMGB1 expression and activated autophagy in NSCLC cells. The starvation-induced autophagy was inhibited by miR-142-3p overexpression or HMGB1 knockdown. Moreover, miR-142-3p overexpression or HMGB1 knockdown increased PI3K, Akt, and mTOR phosphorylation. Inhibition of PI3K or mTOR restored starvation-induced autophagy inhibited by miR-142-3p overexpression or HMGB1 knockdown. Conclusions: These results demonstrated that miR-142-3p regulates starvation-induced autophagy of NSCLC cells by directly downregulating HMGB1 and subsequently activating the PI3K/Akt/mTOR pathway. Further, miR-142-3p overexpression inhibited anticancer drug-induced autophagy and increased chemo-sensitivity of NSCLC in vitro and in vivo. These findings shed light on the therapeutic potential of miR-142-3p in combating acquired NSCLC chemo-resistance.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi85-vi85
Author(s):  
Farhad Dastmalchi ◽  
Aida Karachi ◽  
Changlin Yang ◽  
Hassan Azari ◽  
Alex Vlasak ◽  
...  

Abstract Dendritic cell (DC) vaccine efficacy is directly related to the efficiency of DC migration to the lymph node after delivery to the patient. In this research we discovered increasing cell migration by utilizing sarcosine improved anti-tumor efficacy. We hypothesized that sarcosine induced cell migration was due to chemokine or cytokine signaling. METHODS To generate DC vaccines, DCs were harvested from bone marrow of wild type C57BL/6 mice and electroporated with OVA-mRNA. Human DCs were isolated from PBMCs. DCs were treated with sarcosine at 20mM. OT-I T cells were isolated from transgenic mice and injected intravenously into B16F10-OVA tumor bearing mice. Following T cell transfer, DC vaccines were injected intradermal. In vitro migration was analyzed via transwell migration assay. In vivo migration was evaluated by flow-cytometry and immunofluorescence microscopy. Gene expression in RNA was investigated in DCs via RT-PCR and Nanostring. RESULTS Sarcosine significantly increases human and murine DC migration in vitro. In vivo murine model, sarcosine-loaded DCs had significantly increased migration to both the lymph nodes and spleen after intradermal delivery. B16F10-OVA tumor bearing mice were treated with the sarcosine-loaded DC vaccines resulted in a significant survival advantage over control and naïve DC vaccines. Gene expression in RNA was investigated in DCs. CXCR2,CXCL3 and CXCL1 were found to be upregulated in sarcosine-loaded DCs. Further metabolic analysis demonstrated the upregulation of cyclooxygenase-1 and Pik3cg. In vitro DC migration in presence of CXCR2 neutralizing antibody showed sarcosine induced migration was abrogated by adding the CXCR2 neutralizing antibody in both human and murine DCs. Animals that treated with sarcosine-loaded DC showed significantly better tumor control compares to the animals receiving anti-CXCR2 antibody one hour before DC injection. CONCLUSION Sarcosine increases the migration of murine and human DCs via the CXC chemokine pathway. This platform can be utilized to improve existing DC vaccine strategies.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Andressa Vilas Boas Nogueira ◽  
João Antonio Chaves de Souza ◽  
Rafael Scaf de Molon ◽  
Elyne da Silva Mariano Pereira ◽  
Sabrina Garcia de Aquino ◽  
...  

Aim.This study sought to investigate thein vitroexpression profile of high mobility group box 1 (HMGB1) in murine periodontal ligament fibroblasts (mPDL) stimulated with LPS or IL-1βandin vivoduring ligature- or LPS-induced periodontitis in rats.Material and Methods.For thein vivostudy, 36 rats were divided into experimental and control groups, and biopsies were harvested at 7–30 d following disease induction. Bone loss and inflammation were evaluated. HMGB1 expression was assessed by immunohistochemistry, qPCR, and Western blot.Results.Significant increases in mPDL HMGB1 mRNA occurred at 4, 8, and 12 h with protein expression elevated by 24 h. HMGB1 mRNA expression in gingival tissues was significantly increased at 15 d in the LPS-PD model and at 7 and 15 d in the ligature model. Immunohistochemical staining revealed a significant increase in the number of HMGB1-positive cells during the experimental periods.Conclusion.The results show that PDL cells produce HMGB1, which is increased and secreted extracellularly after inflammatory stimuli. In conclusion, this study demonstrates that HMGB1 may be associated with the onset and progression of periodontitis, suggesting that further studies should investigate the potential role of HMGB1 on periodontal tissue destruction.


2018 ◽  
Vol 215 (2) ◽  
pp. 559-574 ◽  
Author(s):  
Xiang Xiao ◽  
Yihui Fan ◽  
Junhui Li ◽  
Xiaolong Zhang ◽  
Xiaohua Lou ◽  
...  

Th9 cells are prominently featured in allergic lung inflammation, but the mechanism that regulates IL-9 induction in T helper cells remains poorly defined. Here we demonstrate that formation of super-enhancers (SEs) is critical in robust induction of IL-9 and that assembly of the Il9 SEs in Th cells requires OX40-triggered chromatin acetylation. Mechanistically, we found that OX40 costimulation induces RelB expression, which recruits the histone acetyltransferase p300 to the Il9 locus to catalyze H3K27 acetylation. This allows binding of the SE factor Brd4 to organize assembly of the SE complex, which in turn drives robust IL-9 expression and Th9 cell induction. Thus, Th9 cells are strongly induced upon OX40 stimulation, and disruption of SEs abolished Th9 cell induction in vitro and inhibited Th9 cell–mediated allergic airway inflammation in vivo. Together, our data suggest that formation of SEs is essential in IL-9 expression and Th9 cell induction. These findings may have important clinical implications.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hélène Letscher ◽  
Viviane A. Agbogan ◽  
Sarantis Korniotis ◽  
Pauline Gastineau ◽  
Emmanuel Tejerina ◽  
...  

AbstractEarly innate education of hematopoietic progenitors within the bone marrow (BM) stably primes them for either trained immunity or instead immunoregulatory functions. We herein demonstrate that in vivo or in vitro activation within the BM via Toll-like receptor-9 generates a population of plasmacytoid dendritic cell (pDC) precursors (CpG-pre-pDCs) that, unlike pDC precursors isolated from PBS-incubated BM (PBS-pre-pDCs), are endowed with the capacity to halt progression of ongoing experimental autoimmune encephalomyelitis. CpG activation enhances the selective migration of pDC precursors to the inflamed spinal cord, induces their immediate production of TGF-β, and after migration, of enhanced levels of IL-27. CpG-pre-pDC derived TGF-β and IL-27 ensure protection at early and late phases of the disease, respectively. Spinal cords of CpG-pre-pDC-protected recipient mice display enhanced percentages of host-derived pDCs expressing TGF-β as well as an accumulation of IL-10 producing B cells and of CD11c+ CD11b+ dendritic cells. These results reveal that pDC precursors are conferred stable therapeutic properties by early innate activation within the BM. They further extend to the pDC lineage promising perspectives for cell therapy of autoimmune diseases with innate activated hematopoietic precursor cells.


2005 ◽  
Vol 19 (7) ◽  
pp. 1884-1892 ◽  
Author(s):  
Helena Sim ◽  
Kieran Rimmer ◽  
Sabine Kelly ◽  
Louisa M. Ludbrook ◽  
Andrew H. A. Clayton ◽  
...  

Abstract The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin-β binding to the C-terminal NLS (c-NLS), whereas in others, importin-β recognition is normal, suggesting the existence of an importin-β-independent nuclear import pathway. The SRY N-terminal NLS (n-NLS) binds calmodulin (CaM) in vitro, and here we show that this protein interaction is reduced in vivo by calmidazolium, a CaM antagonist. In calmidazolium-treated cells, the dramatic reduction in nuclear entry of SRY and an SRY-c-NLS mutant was not observed for two SRY-n-NLS mutants. Fluorescence spectroscopy studies reveal an unusual conformation of SRY.CaM complexes formed by the two n-NLS mutants. Thus, CaM may be involved directly in SRY nuclear import during gonadal development, and disruption of SRY.CaM recognition could underlie XY sex reversal. Given that the CaM-binding region of SRY is well-conserved among high mobility group box proteins, CaM-dependent nuclear import may underlie additional disease states.


2019 ◽  
Author(s):  
Ugur M. Ayturk ◽  
Joseph P. Scollan ◽  
Alexander Vesprey ◽  
Christina M. Jacobsen ◽  
Paola Divieti Pajevic ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-seq on freshly recovered long bone endocortical cells from mice that received either vehicle or Sclerostin-neutralizing antibody for 1 week. Bone anabolism-associated transcripts were also not significantly increased in immature and mature osteoblasts recovered from Sclerostin-neutralizing antibody treated mice; this is likely a consequence of being underpowered to detect modest changes in gene expression, since only 7% of the sequenced endocortical cells were osteoblasts, and a limited portion of their transcriptomes were sampled. We conclude that scRNA-seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 371-379 ◽  
Author(s):  
Mariateresa Fulciniti ◽  
Pierfrancesco Tassone ◽  
Teru Hideshima ◽  
Sonia Vallet ◽  
Puru Nanjappa ◽  
...  

Abstract Decreased activity of osteoblasts (OBs) contributes to osteolytic lesions in multiple myeloma (MM). The production of the soluble Wnt inhibitor Dickkopf-1 (DKK1) by MM cells inhibits OB activity, and its serum level correlates with focal bone lesions in MM. Therefore, we have evaluated bone anabolic effects of a DKK1 neutralizing antibody (BHQ880) in MM. In vitro BHQ880 increased OB differentiation, neutralized the negative effect of MM cells on osteoblastogenesis, and reduced IL-6 secretion. In a severe combined immunodeficiency (SCID)–hu murine model of human MM, BHQ880 treatment led to a significant increase in OB number, serum human osteocalcin level, and trabecular bone. Although BHQ880 had no direct effect on MM cell growth, it significantly inhibited growth of MM cells in the presence of bone marrow stromal cells (BMSCs) in vitro. This effect was associated with inhibition of BMSC/MM cell adhesion and production of IL-6. In addition, BHQ880 up-regulated β-catenin level while down-regulating nuclear factor-κB (NF-κB) activity in BMSC. Interestingly, we also observed in vivo inhibition of MM cell growth by BHQ880 treatment in the SCID-hu murine model. These results confirm DKK1 as an important therapeutic target in myeloma and provide the rationale for clinical evaluation of BHQ880 to improve bone disease and to inhibit MM growth.


Sign in / Sign up

Export Citation Format

Share Document