scholarly journals Amyloidosis, Inflammation, and Oxidative Stress in the Heart of an Alkaptonuric Patient

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Lia Millucci ◽  
Lorenzo Ghezzi ◽  
Eugenio Paccagnini ◽  
Giovanna Giorgetti ◽  
Cecilia Viti ◽  
...  

Background. Alkaptonuria, a rare autosomal recessive metabolic disorder caused by deficiency in homogentisate 1,2-dioxygenase activity, leads to accumulation of oxidised homogentisic acid in cartilage and collagenous structures present in all organs and tissues, especially joints and heart, causing a pigmentation called ochronosis. A secondary amyloidosis is associated with AKU. Here we report a study of an aortic valve from an AKU patient.Results. Congo Red birefringence, Th-T fluorescence, and biochemical assays demonstrated the presence of SAA-amyloid deposits in AKU stenotic aortic valve. Light and electron microscopy assessed the colocalization of ochronotic pigment and SAA-amyloid, the presence of calcified areas in the valve. Immunofluorescence detected lipid peroxidation of the tissue and lymphocyte/macrophage infiltration causing inflammation. High SAA plasma levels and proinflammatory cytokines levels comparable to those from rheumatoid arthritis patients were found in AKU patient.Conclusions. SAA-amyloidosis was present in the aortic valve from an AKU patient and colocalized with ochronotic pigment as well as with tissue calcification, lipid oxidation, macrophages infiltration, cell death, and tissue degeneration. A localHGDexpression in human cardiac tissue has also been ascertained suggesting a consequent local production of ochronotic pigment in AKU heart.

2015 ◽  
Vol 66 (01) ◽  
pp. 083-090 ◽  
Author(s):  
Dirk Ziebolz ◽  
Christoph Rost ◽  
Julia Schmidt ◽  
Regina Waldmann-Beushausen ◽  
Friedrich Schöndube ◽  
...  

Background The aim of this pilot study was to detect correlations of microbiological DNA, inflammatory proteins, and infection parameters in patients with periodontal disease (PD) and valvular heart disease (VHD). Methods A perioperative comprehensive dental examination for the investigation of periodontal status, including sampling of specific subgingival bacteria, was performed in 10 patients with indication for surgery of aortic valve stenosis with or without concomitant myocardial revascularization. Standard protocol biopsies were taken from right atrium (A), left septal myocardium (M), and aortic valve (V). Eleven periodontal pathogens DNA in oral and cardiac tissue samples (A/M/V) were analyzed using polymerase chain reaction. For cardiac tissue samples, Western blot analysis of LPS-binding protein (LBP), immunohistochemical (IHC) detection of LBP-big42, LPS-binding protein receptor (CD14), and macrophages (CD68), as well as inflammation scoring measurement were performed. Results Periodontitis was present in all patients with severe intensity in 7, moderate in 2 and mild in one patient. Same bacterial DNA was detected in A, M, and V in different distribution, and detection was more often in atrium than in myocardium or valve tissue. Morphological investigation revealed increased extracellular inflammatory cell migration. In IHC markers of LBP, CD68 and CD14 showed positive findings for all patients in atrium and myocardium. Conclusion Our results demonstrate the presence of oral bacterial DNA in human cardiac tissue, as well as inflammatory markers potentially indicating connection of PD and VHD. Further investigation is necessary to confirm these preliminary data.


2010 ◽  
Vol 13 (4) ◽  
pp. E218-E222 ◽  
Author(s):  
Engin Usta ◽  
Migdat Mustafi ◽  
Andreas Straub ◽  
Gerhard Ziemer

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 563
Author(s):  
Magali Seguret ◽  
Eva Vermersch ◽  
Charlène Jouve ◽  
Jean-Sébastien Hulot

Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 769
Author(s):  
Patoomporn Prasatthong ◽  
Sariya Meephat ◽  
Siwayu Rattanakanokchai ◽  
Juthamas Khamseekaew ◽  
Sarawoot Bunbupha ◽  
...  

Galangin is a natural flavonoid. In this study, we evaluated whether galangin could alleviate signs of metabolic syndrome (MS) and cardiac abnormalities in rats receiving a high-fat (HF) diet. Male Sprague–Dawley rats were given an HF diet plus 15% fructose for four months, and they were fed with galangin (25 or 50 mg/kg), metformin (100 mg/kg), or a vehicle for the last four weeks. The MS rats exhibited signs of MS, hypertrophy of adipocytes, impaired liver function, and cardiac dysfunction and remodeling. These abnormalities were alleviated by galangin (p < 0.05). Interleukin-6 and tumor necrosis factor-α concentrations and expression were high in the plasma and cardiac tissue in the MS rats, and these markers were suppressed by galangin (p < 0.05). These treatments also alleviated the low levels of adiponectin and oxidative stress induced by an HF diet in rats. The downregulation of adiponectin receptor 1 (AdipoR1) and cyclooxygenase-2 (COX-2) and the upregulation of nuclear factor kappa B (NF-κB) expression were recovered in the galangin-treated groups. Metformin produced similar effects to galangin. In conclusion, galangin reduced cardiometabolic disorders in MS rats. These effects might be linked to the suppression of inflammation and oxidative stress and the restoration of AdipoR1, COX-2, and NF-κB expression.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Katsuhisa Matsuura ◽  
Tatsuya Shimizu ◽  
Nobuhisa Hagiwara ◽  
Teruo Okano

We have developed an original scaffold-free tissue engineering approach, “cell sheet engineering”, and this technology has been already applied to regenerative medicine of various organs including heart. As the bioengineered three-dimensional cardiac tissue is expected to not only function for repairing the broad injured heart but also to be the practicable heart tissue models, we have developed the cell sheet-based perfusable bioengineered three-dimensional cardiac tissue. Recently we have also developed the unique suspension cultivation system for the high-efficient cardiac differentiation of human iPS cells. Fourteen-day culture with the serial treatments of suitable growth factors and a small compound in this stirring system with the suitable dissolved oxygen concentration produced robust embryoid bodies that showed the spontaneous beating and were mainly composed of cardiomyocytes (~80%). When these differentiated cells were cultured on temperature-responsive culture dishes after the enzymatic dissociation, the spontaneous and synchronous beating was observed accompanied with the intracellular calcium influx all over the area even after cell were detached from culture dishes as cell sheets by lowering the culture temperature. The cardiac cell sheets were mainly composed of cardiomyocytes (~80%) and partially mural cells (~20%). Furthermore, extracellular action potential propagation was observed between cell sheets when two cardiac cell sheets were partially overlaid, and this propagation was inhibited by the treatment with some anti-arrhythmic drugs. When the triple layered cardiac tissue was transplanted onto the subcutaneous tissue of nude rats, the spontaneous pulsation was observed over 2 months and engrafted cardiomyocytes were vascularized with the host tissue-derived endothelial cells. These findings suggest that cardiac cell sheets formed by hiPSC-derived cardiomyocytes might have sufficient properties for the creation of thickened cardiac tissue. Now we are developing the vascularized thickened human cardiac tissue by the repeated layering of cardiac cell sheets on the artificial vascular bed in vitro.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Sumeet S Vaikunth ◽  
Karl T Weber ◽  
Syamal K Bhattacharya

Introduction: Isoproterenol-induced acute stressor state simulates injury from burns or trauma, and results in Ca 2+ overloading and oxidative stress in diverse tissues, including cardiac myocytes and their subsarcolemmal mitochondria (SSM), overwhelming endogenous Zn 2+ -based antioxidant defenses. We hypothesized that pretreatment with nebivolol (Nebi), having dual beta-1 antagonistic and novel beta-3 receptor agonistic properties, would prevent Ca 2+ overloading and oxidative stress and upregulate Zn 2+ -based antioxidant defenses, thus enhancing its overall cardioprotective potential in acute stressor state. Methods: Eight-week-old male Sprague-Dawley rats received a single subcutaneous dose of isoproterenol (1 mg/kg) and compared to those treated with Nebi (10 mg/kg by gavage) for 10 days prior to isoproterenol. SSM were harvested from cardiac tissue at sacrifice. Total Ca 2+ , Zn 2+ and 8-isoprostane levels in tissue, and mitochondrial permeability transition pore (mPTP) opening, free [Ca 2+ ] m and H 2 O 2 production in SSM were monitored. Untreated, age-/sex-matched rats served as controls; each group had six rats and data shown as mean±SEM. Results: Compared to controls, isoproterenol rats revealed: (1) Significantly (*p<0.05) increased cardiac tissue Ca 2+ (8.2±0.8 vs. 13.7±1.0*, nEq/mg fat-free dry tissue (FFDT)), which was abrogated ( # p<0.05) by Nebi (8.9±0.4 # ); (2) Reduced cardiac Zn 2+ (82.8±2.4 vs. 78.5±1.0*, ng/mg FFDT), but restored by Nebi (82.4±0.6 # ); (3) Two-fold rise in cardiac 8-isoprostane (111.4±13.7 vs. 232.1±17.2*, pmoles/mg protein), and negated by Nebi (122.3+14.5 # ); (4) Greater opening propensity for mPTP that diminished by Nebi; (5) Elevated [Ca 2+ ] m (88.8±2.5 vs. 161.5±1.0*, nM), but normalized by Nebi (93.3±2.7 # ); and (6) Increased H 2 O 2 production by SSM (97.4±5.3 vs. 142.8±7.0*, pmoles/mg protein/min), and nullified by Nebi (106.8±9.0 # ). Conclusions : Cardioprotection conferred by Nebi, a unique beta-blocker, prevented Ca 2+ overloading and oxidative stress in cardiac tissue and SSM, while simultaneously augmenting antioxidant capacity and promoting mPTP stability. Therapeutic potential of Nebi in patients with acute stressor states remains a provocative possibility that deserves to be explored.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kimimasa Tobita ◽  
Jason S Tchao ◽  
Jong Kim ◽  
Bo Lin ◽  
Johnny Huard ◽  
...  

We have previously shown that rat skeletal muscle derived stem cells differentiate into an immature cardiomyocyte (CM) phenotype within a 3-dimensional collagen gel engineered cardiac tissue (ECT). Here, we investigated whether human skeletal muscle derived progenitor cells (skMDCs) can differentiate into a CM phenotype within ECT similar to rat skeletal muscle stem cells and compared the human skMDC-ECT properties with ECT from human induced pluripotent stem cell (iPSc) derived CMs. SkMDCs differentiated into a cardiac muscle phenotype within ECT and exhibited spontaneous beating activity as early as culture day 4 and maintained their activity for more than 2 weeks. SkMDC-ECTs stained positive for cardiac specific troponin-T and troponin-I, and were co-localized with fast skeletal muscle myosin heavy chain (sk-fMHC) with a striated muscle pattern similar to fetal myocardium. The iPS-CM-ECTs maintained spontaneous beating activity for more than 2 weeks from ECT construction. iPS-CM stained positive for both cardiac troponin-T and troponin-I, and were also co-localized with sk-fMHC while the striated expression pattern of sk-fMHC was lost similar to post-natal immature myocardium. Connexin-43 protein was expressed in both engineered tissue types, and the expression pattern was similar to immature myocardium. The skMDC-ECT significantly upregulated expression of cardiac-specific genes compared to conventional 2D culture. SkMDC-ECT displayed cardiac muscle like intracellular calcium ion transients. The contractile force measurements demonstrated functional properties of fetal type myocardium in both ECTs. Our results suggest that engineered human cardiac tissue from skeletal muscle progenitor cells mimics developing fetal myocardium while the engineered cardiac tissue from inducible pluripotent stem cell-derived cardiomyocytes mimics post-natal immature myocardium.


Sign in / Sign up

Export Citation Format

Share Document